

Deliverable D4.3

Report on B5G-OPEN autonomous

and zero-touch networking

capabilities
Editor L. Velasco (UPC)

Contributors UPC

Version 2.0

Date April 15, 2024

Distribution PUBLIC (PU)

Ref. Ares(2024)4611800 - 26/06/2024

 D4.2 GA Number 101016663

DISCLAIMER

This document contains information, which is proprietary to the B5G-OPEN (Beyond 5G – OPtical

nEtwork coNtinuum) consortium members that is subject to the rights and obligations and to

the terms and conditions applicable to the Grant Agreement number 101016663. The action of

the B5G-OPEN consortium members is funded by the European Commission.

Neither this document nor the information contained herein shall be used, copied, duplicated,

reproduced, modified, or communicated by any means to any third party, in whole or in parts,

except with prior written consent of the B5G-OPEN consortium members. In such case, an

acknowledgement of the authors of the document and all applicable portions of the copyright

notice must be clearly referenced. In the event of infringement, the consortium members

reserve the right to take any legal action they deem appropriate.

This document reflects only the authors’ view and does not necessarily reflect the view of the

European Commission. Neither the B5G-OPEN consortium members as a whole, nor a certain

B5G-OPEN consortium member warrant that the information contained in this document is

suitable for use, nor that the use of the information is accurate or free from risk and accepts no

liability for loss or damage suffered by any person using this information.

The information in this document is provided as is and no guarantee or warranty is given that

the information is fit for any particular purpose. The user thereof uses the information at its sole

risk and liability.

 D4.2 GA Number 101016663

REVISION HISTORY

v0 December 1, 2024 L. Velasco ToC

v1 March 29, 2024 All partners Contributions received

v2 April 15, 2024 L. Velasco Frist Integrated version

v3 June 22, 2024 L. Velasco Final Reviewed Version

Revision Date Responsible Comment

 D4.2 GA Number 101016663

LIST OF AUTHORS

Partner ACRONYM Partner FULL NAME Name & Surname

UPC Universitat Politècnica

de Catalunya

Luis Velasco, Marc Ruiz, Salvatore Spadaro,

Morteza Ahmadian, Josep Prat, Jaume

Comellas

TID Telefónica I+D Óscar González de Dios

UC3M Universidad Carlos III

de Madrid

José Alberto Hernández, David

Larrabeiti, Alfonso Sánchez-Macián,

Farhad Arpanaei

CNIT National Inter-

University Consortium

for Telecom.

Filippo Cugini, Kyriakos Vlachos, Alessio

Giorgetti, Andrea Sgambelluri,

CTTC Centre Tecnològic de

Telecomunicacions de

Catalunya

Ramon Casellas, Ricardo Martínez, Carlos

Hernández

Nokia Alcatel Lucent Nokia

Bell Labs

Fabien Boitier, Petros Ramantanis, Isaia

Andrenacci

 D4.2 GA Number 101016663

GLOSSARY

A3C Asynchronous Advantage Actor Critic

AE Autoencoder

AI Artificial Intelligence

API Application Programming Interface

ASE Amplified Spontaneous Emission

BBR Bandwidth Blocking Ratio

BER Bit Error Ratio

BoDA Bandwidth-On-Demand Allocation

CMIS Common Management Interface Specification

CU Cost Unit

D3QN Dueling Double Deep Q-Learning

DL Deep Learning

DNN Deep Neural Network

DRL Deep Reinforcement Learning

DSCM Digital Subcarrier Multiplexing

DSLAM Digital Subscriber Line Access Multiplexers

DSP Digital Signal Processing

DT Digital Twin

EDFA Erbium Doped Fiber Amplifier

EEPROM Electrically Erasable Programmable Read-Only Memory

FEC Forward Error Correction

FS Frequency Slots

GCR Global Concurrent Restoration

GMM Gaussian Mixture Models

GN Gaussian Noise

GoF Goodness-Of-Fit

HT Holding Time

IAT Inter-Arrival Time

ILP Integer Linear Programming

IBN Intent-Based Networking

IQ In-Phase and Quadrature

ISP Internet Service Provider

IPoWDM IP over Wavelength Division Multiplexing

KNN K Nearest Neighbors

kSPFF k-Shortest Paths First Fit

MAS Multi-Agent System

MDA Monitoring And Data Analytics

ML Machine Learning

NBI Northbound Interface

NCACM Network Configuration Access Control Model

NetP B5G-Open Network Planner

NLI Nonlinear Optical Interference

NN Neural Network

OA Optical Amplifiers

OIF Optical Internetworking Forum

OLT Optical Line Terminals

 D4.2 GA Number 101016663

ONIE Open Network Install Environment

OptC Optical SDN Controller

P2MP Point-To-Multipoint

P2P Point-To-Point

PckC Packet SDN Controller

PDF Probability Density Function

PCA Principal Component Analysis

PDL Polarization Dependent Loss

PoP Point Of Presence

PRBS Pseudo-Random Bit Sequence

QoS Quality of Service

QoT Quality of Transmission

RF Random Forest

RL Reinforcement Learning

ROADM Reconfigurable Optical Add / Drop Multiplexers

RSA Routing And Spectrum Assignment

Rx Receiver

SDN Software Defined Networking

SLA Service Level Agreement

SNR Signal-To-Noise Ratio

SVN Support Vector Machine

TAPI Transport API

TD3 Twin Delayed Deep Deterministic Policy Gradient

TIP Telecom Infra Project

VDM Versatile Diagnostics Monitoring

VNF Virtual Network Function

WDM Wavelength Division Multiplexing

WSS Wavelength Selective Switches

ZTN Zero-Touch Networking

 D4.2 GA Number 101016663

EXECUTIVE SUMMARY

Building a framework for an Artificial Intelligence (AI) / Machine Learning (ML) -assisted

autonomous and dynamic network supporting real-time operations and Zero-Touch Networking

(ZTN) is among the objectives of B5G-OPEN. Autonomous operation is implemented at various

levels, from device to network, which requires the development of a distributed knowledge and

decision-making engine that massively relies on the use of monitoring data and on the

application of AI/ML

This deliverable shows a clear path towards autonomous networking, which includes the

following ingredients:

1 Deep understanding of the network traffic, not only in terms of volume, but also its

dynamicity, as well as on the requirements of services, specifically in terms of bandwidth

and latency.

2 Planning and dimensioning of the network infrastructure, considering the latest

advancements on optical technologies, like Digital Subcarrier Multiplexing (DSCM) and

Point-To-Multipoint (P2MP) connectivity.

3 Predictive maintenance, as a management tool to reduce overprovisioning and save

operational expenditures.

4 The development of digital twining solutions, i.e., digital representations of the optical

network.

5 The extensive use of ML, specifically Reinforcement Learning (RL), which is one of the main

techniques that enable truly autonomous ZTN.

6 Decentralized decision making precisely based on the deployment of RL that use network

telemetry for achieving the defined goals.

 D4.2 GA Number 101016663

TABLE OF CONTENTS

1 Introduction ... 1

2 Background on Reinforcement Learning ... 3

3 Network Planning and Orchestration .. 5

3.1 Planning of P2MP connectivity .. 5

3.1.1 Example of a typical MAN scenario ... 6

3.1.2 Clustering example .. 7

3.1.3 On clustering leaf nodes with uncorrelated traffic profiles 7

3.1.4 CA1: Clustering of uncorrelated traffic sources ... 9

3.1.5 CA2: Clustering of uncorrelated traffic sources and short geographical distance 10

3.1.6 Simulations and results .. 10

3.1.7 Simulation #1: without geographical coordinates ... 10

3.1.8 Simulation #2: with GPS coordinates ... 12

3.1.9 CAPEX savings: P2MP trees vs fixed P2P transceivers ... 12

3.2 Reinforcement Learning Based Routing For Packet-Optical Networks With Multilayer

Measurements .. 13

3.2.1 Detecting convergence episode in Reinforcement Learning 14

3.2.2 Simulations and RL algorithm .. 15

3.3 Latency constrained Services ... 20

3.3.1 SDN Control Plane ... 20

3.3.2 DRL-based latency-aware RSA ... 21

3.3.3 Simulations and Results ... 22

3.4 Function Placement ... 24

3.4.1 Proposed Framework .. 24

3.4.2 Simulations Scenario .. 25

3.4.3 Performance Evaluation .. 26

4 Failure Management ... 28

4.1 Failure detection, localization and identification ... 29

4.1.1 The MESARTHIM Methodology ... 29

4.1.2 Surveillance and Localization ... 30

4.1.3 Soft-Failure Identification and Severity Estimation.. 35

4.1.4 Results ... 38

4.1.5 Concluding Remarks .. 45

4.2 Restoration .. 46

 D4.2 GA Number 101016663

4.2.1 RL agent for restoration in Optical Networks .. 46

4.2.2 Evaluation Setup .. 47

4.2.3 Experimental Results ... 48

4.3 Failure Recovery in MANTRA Architectures ... 49

4.3.1 Common Management Interface Specification (CMIS) for Pluggable Transceiver

Management ... 51

4.3.2 Connectivity setup and Failure Recovery in MANTRAS Architectures 53

4.3.3 Experimental Validation and Results ... 54

5 Digital Twin for the Optical Time Domain .. 59

5.1 AI-Based Constellation Analysis ... 59

5.2 Constellation analysis and modelling ... 62

5.3 Lightpath Analysis Use cases ... 65

5.4 Illustrative numerical Results ... 68

5.5 Concluding Remarks .. 75

6 Near-Real-Time Operation ... 76

6.1 Low complexity optical power optimization .. 76

6.2 Hash-based techniques for the detection of large flows in p4 scenarios 79

6.2.1 Packet and flow statistics in aggregated IP nodes ... 79

6.2.2 Count-Min Sketches for traffic flows detection ... 80

6.2.3 Scenario and experiments ... 81

6.2.4 Experimental validation ... 82

6.3 Autonomous Capacity Operation .. 83

6.3.1 The Flow Capacity Autonomous Operation (CRUX) Problem 84

6.3.2 CRUX Problem Definition and RL Methodology ... 87

6.3.3 Cycles for Robust RL .. 92

6.3.4 Illustrative Results .. 95

6.3.5 Concluding Remarks .. 101

6.4 Dynamic Control of P2MP connectivity ... 103

6.4.1 MAS-based Subcarrier Allocation .. 103

6.4.2 Architecture and Agent Models ... 104

6.4.3 Centralized Subcarrier Allocation .. 106

6.4.4 Results ... 107

6.4.5 Conclusions .. 108

7 Conclusions .. 109

References ... 110

 D4.2 GA Number 101016663

LIST OF FIGURES

Figure 1: Example of a hierarchical MAN with P2MP trees. .. 7

Figure 2: Dynamic allocation of subcarriers at different times of the day (left) in the morning

(right) at night. .. 8

Figure 3. Normalized traffic profiles: Residential, Office, Transport and Comprehensive. 9

Figure 4. Daily traffic profiles with low traffic variability (10%) and high-traffic variability (30%).

 ... 10

Figure 5. Daily traffic profiles for clusters/trees no. 1, 2, 3, and 4 for simulation case 1. 11

Figure 6. Total cost evolution in the short and medium term for 1,000 nodes: P2MP vs P2P

technology. .. 13

Figure 7. Eight-node topology example with link metrics... 15

Figure 8. Tokyo Topology .. 17

Figure 9. Convergence of RL algorithm before (left) and after (right) link degradation for the

Tokyo topology .. 18

Figure 10. Milano topology ... 19

Figure 11. Convergence of RL algorithm before (left) and after (right) link degradation for the

Milano topology .. 19

Figure 12. SDN control plane .. 21

Figure 13. Topologies used for the experimental evaluation ... 22

Figure 14. Training phase of DRL RSA ... 23

Figure 15. Performance benchmarking of kSPFF and DRL RSA ... 23

Figure 16. DRL-based solution for VNF-FG Placement .. 25

Figure 17. (a) NSFNet topology and (b) Unseen network topology .. 25

Figure 18. Convergence of DRL-based solution, and Network service blocking rate 26

Figure 19. (a) Network service blocking rate and training convergence in unseen topology..... 27

Figure 20. Overview of the proposed failure analytics architecture and the MESARTHIM

methodology ... 30

Figure 21. Three examples of behavior. .. 31

Figure 22. Example of identification and severity estimation at time t. 36

Figure 23. Experimental testbed. ... 39

Figure 24. Modeling parameter value vs. bandwidth for A/D WSS OSNR (a) and OA NF (b) 39

Figure 25. SNR vs. link length ... 39

Figure 26. Considered optical network topology. .. 40

Figure 27. Number of distinct routes per link and max number of routes for localization. 40

Figure 28. Modeling Config Search. ... 40

Figure 29. Evolution of monitored lightpath SNR against time and estimation of modeling

parameters. ... 41

Figure 30. Absolute and relative modeling parameter estimation error. 41

Figure 31. NF Gradual Soft-Failure Identification. ... 44

Figure 32. P-max Gradual Soft-Failure Identification ... 44

Figure 33. Localization by identifying the Soft-Failure. .. 45

Figure 34. Severity Estimation. .. 45

Figure 35: DRL Agent for Restoration. ... 47

Figure 36: Restorability and BBR using RL agent, GCR and Sequential Approach. 48

 D4.2 GA Number 101016663

Figure 37: MANTRA Dual Architecture Implementation, with workflow steps for activating a

connectivity service. .. 50

Figure 38: MANTRA Dual Architecture Implementation, with workflow steps for activating a

connectivity service. .. 51

Figure 39: Module State Machines (MSM) for the initialization of the pluggable modules 52

Figure 40: Top level of Testbed topology for validating connectivity and failure services in

MANTRA architectures. ... 55

Figure 41: Screenshots of GUIs of deployed controllers and hardware devices. 55

Figure 42: Distribution of traffic recovery time over 30 experiments: (a) optical restoration; (b)

hybrid restoration; (c) hybrid protection. .. 58

Figure 43. Reference network architecture. .. 60

Figure 44. Details of sandbox (a) and node agent (b). ... 60

Figure 45. Lightpath analysis use cases. .. 62

Figure 46. Feature extraction. Supervised (a) and unsupervised (b). .. 63

Figure 47. Lightpath example (a) and its proposed model (b). .. 65

Figure 48. Single link (a) and multiple link (b) lightpath scenarios. .. 69

Figure 49. Supervised feature extraction performance. .. 70

Figure 50. Example of supervised feature extraction for two constellation points after 400km and

1,600 Km. ... 70

Figure 51. Unsupervised feature extraction performance... 71

Figure 52. Lightpath modelling performance. ... 72

Figure 53. sca model performance. ... 73

Figure 54. pme model performance. ... 73

Figure 55. Constellation point -3+3i examples for power scenarios. ... 74

Figure 56. Power scenario discrimination with Y. .. 74

Figure 57. Power scenario discrimination with Z. .. 74

Figure 58. Relevance vs power scenarios. ... 74

Figure 59: Setup used to collect the SNR samples. The optical link consists of a repetition of an

SSMF+EDFA span, followed by either a “regular” or “random” location of the ROADM (two WSS

cascade). .. 77

Figure 60: (a) RF cross-validation accuracy as a function of probability limit, plim for variable

number of bins N. (b) Cross-validation accuracy violin plots for RF, KNN, SVM and ANN. 77

Figure 61: a) Classifiers power ranges and corresponding corrections, with c, P and p constants

and r = ±1 b) Cross-validation ML performance for Classifiers A and B using combinations of

SNR moments (markers) or normalized PDF (lines). c) ML vs. naive optimization in terms SNR

improvement (upper) and required iterations (lower). .. 78

Figure 62. Example of a CMS structure, d=3 hash functions and W columns 80

Figure 63. Flow-size distribution: Zipf-like CDF ... 82

Figure 64. CMS accuracy at estimating top-20 heavy-hitter flows for different configurations of

CMS sketch: (left) d = {3,5,7} hashes and W=64 columns and (right) d = {3,5,7} and W=256

columns ... 82

Figure 65. Experimental setup in lab ... 83

Figure 66. Flow capacity autonomous operation. RL framework with learner, agent, and

environment. ... 85

Figure 67. Operation lifecycle. (a) Online learning RL operation. (b) Offline training with online

fine tuning RL operation. ... 86

Figure 68. Extended architecture for flow capacity autonomous operation w/ offline learning. 87

Figure 69. Load-delay model example. .. 88

 D4.2 GA Number 101016663

Figure 70. Capacity allocation definition (a) and evolution (b). ... 89

Figure 71. General RL workflow. .. 90

Figure 72. Reward function vs. capacity slack/surplus. .. 91

Figure 73. Achieving zero loss operation. .. 96

Figure 74. Q-Learning operation. Traffic and allocated capacity for low (a), moderated (b), and

high (c) traffic variance. ... 97

Figure 75. QoS as a function of ρ models trained with a sinusoidal traffic pattern (a–c) and real

traffic (d–f). .. 97

Figure 76. Optimal margin multiplier (a) and overprovisioning (b). ... 98

Figure 77. Relative extra overprovisioning. ... 98

Figure 78. Phase I: Self-tuned threshold (a) and traffic variance analysis (b). 99

Figure 79. Phase II: QoS (a) and ρ (b) evolution. .. 100

Figure 80. Overprovisioning reduction. ... 100

Figure 81. Phase III: Traffic variance change scenarios. Gradual increase (a) and sudden increase

(b). ... 101

Figure 82: MP2P connectivity based on DSCM (a). SC allocation upon Tx1 request (b) and (c).

Neighbor shifting (d). ... 104

Figure 83: Relation between MAS and transponder agents .. 105

Figure 84: Offered Traffic at Rx .. 107

Figure 85: MAS vs Centralized ... 107

Figure 86: SC reconfigurations ... 107

 D4.2 GA Number 101016663

LIST OF TABLES

Table 1 Simulations CA1 in 1,000 node networks ... 12

Table 2 Simulations CA2 in 1,000 node networks ... 12

Table 3 Primary Optimal Path Selection under Normal Conditions .. 16

Table 4 Secondary Optimal Path Selection under Degraded Conditions 16

Table 5 Optimal Policy: primary (in normal operation) and secondary (after degradation of links

1-6, 1-4 and 10-11 for the Tokyo Topology) ... 17

Table 6 Optimal Policy: primary (in normal operation) and secondary (after degradation of links

5-6, 7-23, 22-41, 29-30 for the Milano Topology) ... 19

Table 7 Network Service Types ... 26

Table 8. Notation for Failure management ... 31

Table 9. Indicator function components ... 37

Table 10. Examples of Soft-Failure Localization .. 43

Table 11: Summary of the MESARTHIM Methodology ... 46

Table 12: Tuneability performance of coherent pluggable modules within SONiC IPoWDM box.

 ... 56

Table 13: Transmission performance from CCMIS interface with narrow-filtering. 57

Table 14. Input relevance variation due to power degradation. .. 74

Table 15. Flow and packet rate per port at 100 and 400 Gb/s (for different loads) 80

Table 16.CMS dimensioning examples .. 81

Table 17. Notation - Autonomous Capacity Operation. .. 87

Table 18. Summary of RL approaches. .. 91

Table 19. Additional overprovisioning when fixing ρ conservatively. ... 99

Table 20. Phase III: Analysis under traffic changes. .. 101

Table 21. Summary of results for policy-based and RL operation with and without offline

learning.. 102

Table 22. Message Exchange Analysis... 108

 D4.2 GA Number 101016663

LIST OF ALGORITHMS

Algorithm 1. Find Behavior Procedure .. 32

Algorithm 2. SNR-wise Surveillance Algorithm ... 32

Algorithm 3. Modeling-wise Surveillance Algorithm .. 33

Algorithm 4. Soft-Failure Localization Algorithm .. 34

Algorithm 5. Modeling Config Search ... 34

Algorithm 6. Soft Failure Identification ... 36

Algorithm 7. Severity Estimation... 38

Algorithm 8. Lightpath models setup/update ... 66

Algorithm 9. [Rx] - Length Analysis ... 67

Algorithm 10. [Rx] - Importance analysis .. 67

Algorithm 11. Analyzer Initialization ... 92

Algorithm 12. varianceAnalysis(). .. 92

Algorithm 13. Main Analyzer Procedure ... 93

Algorithm 14. thresholdBased() (Phase I) ... 93

Algorithm 15. ModelSelectionAndTuning() (Phase II) ... 94

Algorithm 16. specificModel() (Phase III) .. 95

Algorithm 17. Rx Agent ... 105

 D4.3 GA Number 101016663

1

1 INTRODUCTION

Building a framework for an Artificial Intelligence (AI) / Machine Learning (ML) -assisted

autonomous and dynamic network supporting real-time operations and Zero-Touch Networking

(ZTN) is among the objectives of B5G-OPEN. Autonomous operation is implemented at various

levels, from device to network, which requires the development of a distributed knowledge and

decision-making engine that massively relies on the use of monitoring data.

The deliverable shows different approaches to reduce operation overheads by: (i)

overprovisioning minimization though planning and orchestration that considers multi-layer

complexity; (ii) predictive failure management; and (iii) simplification of network and service

operations, through digital twining solutions and near real-time control of network resources.

Because several approaches presented in this deliverable are based on Reinforcement Learning

(RL), Section 2 first provides some background on the topic.

The rest of the deliverable is organized into four main sections:

• Section 3 focuses on network planning and orchestration, and presents various key

mechanisms and approaches aimed at planning the network and enabling autonomous

operations through orchestration functions. Network planning is the most classical

approach used by network operators to achieve cost savings in deploying network

infrastructure. This section explores different approaches for that objective, but first it

focuses on understanding traffic patterns, including daily fluctuations and peak traffic

periods, along with expected requirements, as such information serves as input for

dimensioning the network infrastructure. The first study specifically focuses on metro

networks utilizing Point-To-Multipoint (P2MP) connectivity services based on Digital

Subcarrier Multiplexing (DSCM). In the provisioning connectivity on top of Elastic Optical

Networks (EON), a crucial challenge is the Routing and Spectrum Assignment (RSA)

problem that must incorporate QoS constraints of the services, such as maximum

tolerated latency and guaranteed bandwidth. Approaches based on deep reinforcement

learning (DRL) demonstrate their good performance. Finally in this section, the

integration of computing and networking resources is also considered, as it is pivotal for

the efficient deployment of network services that meet the diversified requirements of

various vertical industries (e.g., Industry 4.0, automotive). The Virtual Network

Functions (VNF) placement and the establishment of lightpaths is faced using a DRL

approach.

• Section 4 moves to failure management on the optical layer and elaborates on our

proposal (named MESARTHIM) for soft-failure detection, identification, localization and

severity estimation. The methodology makes use of a network Digital Twin (DT) that

helps in the process, and it shows remarkable anticipation in failure detection and

localization by analyzing the estimation of the value of the modelling parameters of the

devices. Next, failure recovery and restoration are visited, where evaluation of a DRL-

based agent specifically designed for the autonomous restoration of disrupted

lightpaths following an optical link failure is presented. Finally, the practical application

of failure recovery is shown using the MANTRA architecture defined by the Telecom

Infra Project (TIP). The architecture includes a hierarchical control plane with the B5G-

OPEN parent controller on top of packet and optical Software-Defined Networking

(SDN) controllers. Workflows for activating connectivity services as well as for failure

 D4.3 GA Number 101016663

2

recovery are introduced and experimental results with real traffic show reduced

recovery times.

• In the view of the benefits of using digital twining (DT) solutions for failure management,

Section 5 presents the development of a DT for the optical time domain. The solution,

named OCATA, based on concatenating Deep Neural Network (DNN) models suited for

the specific lightpath under analysis. The models are designed to run at the receiver (Rx)

site, and continuously analyze lightpath’s metrics to compress monitored constellation

samples and detect potential anomalies.

• Section 6 concentrates on the near real-time control. First, a solution for optical power

optimization with low complexity is presented aimed at refining the knowledge of the

network physical parameters. Next, at the packet layer, solutions for the detection of

large flows based on hash techniques is shown in P4 scenarios aimed at performing

specific operations on those flows at the data plane. Next, solutions based on DRL are

presented for the control of the capacity resources in multilayer packet over optical

scenarios. An agent running on top of the network nodes makes autonomous decisions

near real-time aimed at minimizing the capacity allocated at the optical layer for a given

packet flow. This approach consumes local packet telemetry and makes local decisions.

The final work presented in this section goes much further in the decentralization of the

control for near real-operation, and presents an approach based on multi-agent systems

(MAS), where agents coordinate among them for the control of optical P2MP

connectivity based on DSCM.

Finally, Section 7 draws the main conclusions of this deliverable.

 D4.3 GA Number 101016663

3

2 BACKGROUND ON REINFORCEMENT LEARNING

In general, Reinforcement Learning (RL) is a type of AI/ML strategy in which an agent learns to

behave in an environment by trial and error, that is, by making decisions and receiving positive

rewards (or penalties as negative rewards). The agent is rewarded for taking actions that lead to

desired outcomes and penalized when undesired outcomes occur. Over time, the agent learns

to take the best actions in each situation that maximize its rewards (or minimize penalties)

[JAN19, NAE20]. RL is effective for a variety of tasks in optical networks, including resource

allocation (wavelengths and bandwidth), traffic engineering of flows to minimize congestion and

resiliency against failures [POI07, MOM22, NAT20].

The formulation of RL problems require to define:

• A set of states S which are representations of the environment at a given point in time.

It can be anything from a single number to a complex data structure.

• A set of Actions A that can be taken by the agent at a given state s from S.

• Rewards which are feedback signals that the agent receives from the environment after
taking an action in a given state. Rewards can be positive or negative.

• Discounted returns: The discounted return of a state is the sum of all the rewards that

the agent expects to receive in the future, discounted by a factor of  (gamma). This
value is a number between 0 and 1 that controls how much the agent values future
rewards. A high gamma value means that the agent values future rewards more.

• Finally, the policy  (pi) which maps states to actions.

The goal of RL is to find a policy  that maximizes the agent's expected discounted return in the

long term. The agent can do this by trial and error. It tries different actions at different states

and observes the received rewards. Over time, the agent learns to take those actions that lead

to higher expected discounted returns. There are many libraries with different RL algorithms

already coded, both in R and Python [NAT20]. Examples, for open-source programming language

R, include contextual, ReinforcementLearning and MDPtoolbox.

The simplest RL is Q-learning, which is a model-free discrete RL method that is able to learn the

optimal policy represented by a Q-table of pairs <s, a>, each containing a q value. Being at state

s, an action a is taken—either the one corresponding to the highest q value, or chosen randomly.

After the action is implemented, it is evaluated by receiving the new state, s’, and the gained

reward r from the environment. The agent then updates the corresponding q value in the Q-

table. Q-learning works efficiently for problems where both states and actions are discrete and

finite. However, it suffers from two main problems: it introduces overestimation, which leads to

suboptimal policies, and the Q-table grows with the number of states. It may be appropriate to

provide some more information on what is behind the Q-learning algorithm. It updates its value

function based on an equation that considers the immediate reward received for an action, plus

the maximum future rewards. The Q-value of a state-action pair (s, a) is updated as follows:

Q(s, a) <-- Q(s, a) +  [R(s, a) +  maxa' Q(s', a') - Q(s, a)] (1)

where:

• Q(s, a) denotes the current estimate of the value of action a in state s.

•  (alpha) is the learning rate, determining the impact of new information on the existing
Q-value.

• R(s, a) is the immediate reward received after taking action a in state s.

•  is the discount factor, which balances the importance of immediate and future
rewards.

 D4.3 GA Number 101016663

4

• maxa' Q(s', a') represents the maximum predicted reward achievable in the next state s',
considering all possible actions a'.

Q-learning excels in scenarios where the agent must learn the value of actions in different states

without requiring a model of the environment. This characteristic makes it particularly adept for

problems where the environment's dynamics are complex or unknown. Q-learning's

straightforwardness and efficiency in learning optimal policies solely from interactions with the

environment render it a versatile tool for a wide range of applications [NAE20].

Deep Q-learning (DQN) substitutes the Q-table by a feed-forward DNN that receives a

continuous representation of the state and returns the expected q value for each discrete action.

Because the DNN tends to make learning unstable, countermeasures need to be taken. The most

extended measure is to keep a replay buffer storing the last experiences, i.e., tuple <s, s’, r, a>

that is used to retrain the DNN. In addition, double DQN uses two different DNNs (learning and

target) to avoid overestimation, which happens when a non-optimal action is quickly biased (due

to noise or exploration) with a high q value that makes it preferably selected. Thus, the learning

model is updated using the q values retrieved from the target DNN, which is just a simple copy

of the learning model that is periodically updated. Finally, dueling double DQN (named D3QN in

this paper) uses two different estimators to compute the q value of a pair <s, a>: (i) the value

estimator, which can be intuitively seen as the average q value of any action taken at state s;

and (ii) the advantage estimator, which is the specific state action-dependent component. The

sum of both value and advantage components returns expected q values. DRL has demonstrated

remarkable success in various domains, from mastering complex games to autonomous vehicle

navigation and robotics, showcasing its capability to process and act upon large-scale and

complex inputs effectively [AIS23, KUM22].

DQN-based methods assume a finite discrete action space. If continuous state and action spaces

are required, other approaches such as Actor–Critic methods can be used. The main idea behind

Actor–Critic methods is that two different types of models are trained separately: (i) actors, who

are in charge of computing actions based on states, and (ii) critics, who are in charge of

evaluating the actions taken by actors, i.e., to compute q values. Both actor and critic models

can be implemented by means of DNNs. Among all different Actor–Critic methods, the TD3

method considers one single actor and two different critic models, where the minimum value

from the two critics is used to learn, aiming at reducing overestimation.

 D4.3 GA Number 101016663

5

3 NETWORK PLANNING AND ORCHESTRATION

This section delves into various key mechanisms and approaches aimed at optimizing network

planning and enabling autonomous operations through orchestration functions. At a macro

level, network planning endeavors to achieve cost savings in deploying network infrastructure,

particularly in terms of devices like optical transceivers. Central to this objective is

understanding anticipated traffic patterns, including daily fluctuations and peak traffic periods,

along with expected requirements. This information serves as input, leveraging techniques such

as ML, to effectively meet traffic demands while appropriately sizing the devices and elements

constituting the network infrastructure. The study specifically focuses on metro networks

utilizing P2MP connectivity services based on DSCM, capitalizing on its inherent high-capacity

and flexibility advantages.

In the (on-line) network operations when provisioning/re-optimizing/restoring connectivity

services, the orchestration of different underlying technologies (packet and optical) relies on the

autonomous functions. To this end, it is essential supporting well-defined closed-loops functions

(observation-decision-action) which can be realized through constructing digital network

representations, i.e., Digital Twin (DT). In a nutshell, the relevant network and device

information is constantly represented and retrieved (e.g., using dedicated telemetry and

monitoring platform). The collected data can be conveniently analyzed and processed, and

eventually digested by e.g., offline/dynamic trained AI/ML models. In this regard, diverse

supervised, unsupervised and reinforcement learning (combined with Deep Learning) can be

adopted depending on the targeted network operation. Applied AI/ML algorithms and models

can support a broad range of autonomous decisions, such as detecting performance

degradations (e.g., optical power anomalies), better fulfilling stringent requirements (e.g.,

latency, placement of compute network functions) of arriving network services, assisting the

SDN controller to re-optimize the allocation of connections to meet Quality of Transmission

(QoT) needs or attain enhanced resource utilization, etc. The following details the set of

conducted network orchestration studies in B5G-OPEN to highlight the appealing achievements

when orchestrating network services in an autonomous way.

3.1 PLANNING OF P2MP CONNECTIVITY
Telecommunication operators seek technologies to build their next-generation optical networks

focusing on multiple dimensions, namely resiliency, flexibility, programmability and also

scalability and cost-effectiveness. In this sense, P2MP coherent pluggable optics featuring digital

subcarrier multiplexing (DSCM) [Wel21] can potentially provide many of such key requirements,

in particular, high-capacity and flexibility. Such P2MP network architectures allow to reduce the

number of transceivers and intermediate aggregation nodes leading to high-bandwidth and low-

latency configurations in a cost-effective way [Bac20,Hos23,Pav22,Sko21,Nap21]. Recently, a

new Multi-Source Agreement (MSA) working group called the Open XR Forum [Swe22] has

emerged with the goal of fostering collaboration between industry and academia in the

development of P2MP coherent pluggable transceiver technology. The forum aims to develop

products and services, standardize networking interfaces, and ensure interoperability among

vendors. Following [Swe22], the Open XR system concept is a new optical network architecture

that allows a single central node to be interconnected with multiple leaf nodes in a P2MP tree

topology, whereas passive devices (splitters and combiners) are used in between. Thanks to

DSCM, different bandwidth settings can be configured between the central node and each leaf

of the tree. This can simplify access-metro topologies in metropolitan area networks (MANs)

 D4.3 GA Number 101016663

6

and has direct applicability in hub-and-spoke traffic scenarios, which are common in MANs and

5G/6G deployments.

In particular, thanks to DSCM, the total bandwidth in the tree may be split into m Nyquist digital

subcarriers (SC), typically m = 16, each one operating at 25 Gb/s, for a total bandwidth in the

tree of 400 Gb/s, with m × 25 Gb/s (using 16QAM, 3.7 GBaud and dual polarization). In principle,

each individual sub-carrier can be treated independently of all others, including modulation,

management, and aggregation, and thus can be (software-) routed to different destinations,

allowing for a greater degree of flexibility with respect to classical fixed point-to-point (P2P)

pluggable transceivers [Nap22,Wel23]. Thus, if properly designed and planned, such DSCM-

based P2MP trees can offer an opportunity to design cost-efficient and flexible network

topologies by dynamically assigning sub-carriers to individual leaf nodes as needed. In this study,

we present a variation of hierarchical clustering algorithms for designing P2MP trees that take

advantage of the uncorrelated traffic profiles of end (leaf) nodes. This can lead to significant cost

savings in network deployments. The proposed algorithm uses daily traffic patterns to select and

group end nodes that can be most efficiently included under the same P2MP tree. This

maximizes cost savings in terms of the number of transceivers. The algorithm can reduce the

number of trees by up to 18%, which translates to a potential of 40 − 50% total capital

expenditure (CAPEX) savings when compared to fixed P2P designs.

3.1.1 Example of a typical MAN scenario

Figure 1 shows an example of a hierarchical MAN topology with three access nodes (ACO1 to

ACO3) and two metro central offices (MCO1 and MCO2). The MAN provides services to a

heterogeneous number of end nodes, including residential (L4), business (L3), industrial zones

(L8), sports zones (L6), and recreation and entertainment areas (e.g., L1 and L2). These areas use

different technologies, such as active antenna processing units (AAUs), optical line terminals

(OLTs), and digital subscriber line access multiplexers (DSLAMs). The traffic pattern within the

network is dynamic and constantly varies across each area. This scenario is very suitable for a

P2MP architecture where the aggregated traffic at the ACOs (equipped with 100G low-rate

transceivers) is then forwarded to the MCOs (equipped with 400G high-rate P2MP transceivers),

as in [Cas23].

The dynamic management of sub-carriers in the P2MP tree can be autonomously handled by

either a central SDN controller or agent controllers. These controllers leverage data analytics of

traffic patterns, supported by online traffic predictors located at the central controller. As a

result, bandwidth-on-demand allocation (BoDA) can be efficiently provided within a reasonable

timeframe. Each sub-carrier can deliver a throughput of 25 Gbps (25G), with a maximum

transparent reach distance of 500 km [Hos22]. Additionally, the SDN controller is assumed to be

capable of activating and deactivating contiguous subcarriers (SCs) in the 400G and 100G

modules based on the BoDA strategy for both the downlink and uplink directions.

 D4.3 GA Number 101016663

7

Figure 1: Example of a hierarchical MAN with P2MP trees.

3.1.2 Clustering example

Following Figure 1, we consider a hypothetical traffic pattern for all the leaf nodes L1-L8, which

are situated within a specific area. For example, L8 is a leaf node in an industrial area with a

minimum traffic of 175 Gbps (7 x 25 Gbps) and a peak traffic of 275 Gbps (11 x 25 Gbps) over a

given time period. For simplicity, we assume that the upstream and downstream traffic are

symmetrical. We further assume that the SDN controller is aware of the traffic pattern and have

clustered the leaf nodes into three clusters. The AI/ML algorithm presented in the next section

ensures that the leaf nodes are clustered together in a way that their peak traffic times are

uncorrelated. This ensures that the aggregated traffic on any given link never exceeds 400 Gbps

at any time of the day.

For example, in Cluster 1, which comprises leaf nodes 1, 5, and 8, the cumulative throughput

could be as high as 500 Gbps if the peak traffic times of all three nodes coincide. However, this

never happens because the leaf nodes are located in different heterogeneous areas, such as

recreation and entertainment, business and residential, and industrial. As a result, the maximum

aggregated traffic measured is 375 Gbps. Similarly, in the example, the maximum measured

bitrates are 350 Gbps and 400 Gbps for Clusters 2 and 3, respectively, which are both less than

the sum of the peak rates.

The next section provides an overview of AI/ML clustering techniques and how they can be

adapted to find the most appropriate sets of clusters with uncorrelated traffic patterns. This can

help to reduce the number of P2MP trees necessary in a hierarchical MAN.

3.1.3 On clustering leaf nodes with uncorrelated traffic profiles

We start from the hypothesis that leaf nodes exhibit different daily traffic profiles, and this can

be leveraged by the inherent flexibility of DSCM transceivers to build P2MP trees in a cost-

 D4.3 GA Number 101016663

8

efficient manner. Essentially, the 16 x 25Gb/s channels can be assigned to clients in a dynamic

fashion moving channels from one client to another as needed, according to dynamic traffic

demands, thus allowing to provide extra resources to specific clients during his/her peak hour,

and reassigning those resources to other clients on different times of the day, when their peak

hours occur. A simplified version of this idea is shown in Figure 2, where three clients are

assigned a different number of subcarriers in the morning and at night.

Figure 2: Dynamic allocation of subcarriers at different times of the day (left) in the morning

(right) at night.

Clustering is a well-known unsupervised ML method for grouping elements based on a similarity

or distance metric. It is used to reveal subgroups of similar structure within a set of unlabeled

data, where each individual cluster has some homogeneity compared to the rest of the data.

Essentially, clustering algorithms aim at partitioning data into groups such that the elements

within the group are highly related or show minimal distance within the group, while the

distance between groups is maximized.

Depending on the dataset and the application considered, the definition of a given distance is

critical for the algorithm to partition the data. The most common distance metrics used in

clustering techniques include cosine similarity, Euclidean, and Hamming distance, but others can

be defined for specific uses. Regarding the algorithms themselves, there are several different

clustering techniques; the most popular ones are hierarchical clustering and K-means, but there

are others more sophisticated like partitioning Clustering, density-based clustering, etc.

Several measurement-based research studies conducted in the past have identified multiple

aspects in traffic patterns. Some of them observed different behaviors between weekdays and

weekends (see, e.g., [Xu16]), or the peak and valley times of the day. Typically, aggregated traffic

profiles reveal the peak hour in the morning, a valley around lunchtime, and another peak after

lunch; the exact time at which the peaks and valleys occur depends on the habits of the

countries. In all cases, the network is usually quiet at night.

In [Xu16], the authors deeply studied the traffic patterns observed in 9,600 cell towers in the

city of Shanghai, China. Among other interesting observations, they identified four different

patterns of use, namely Residential, Office, Transport, and Comprehensive profiles, the latter

being related to shopping centers and other leisure areas. The profiles account for 16%, 25%,

32% and 27% for Residential, Office, Transport and Comprehensive profiles respectively. These

hourly traffic patterns are reproduced in Figure 3 as 1 x 24 row-vectors, representing different

hours of the day.

400G P2MP
transceiver

100G P2MP
transceivers

75G

25G

100G

400G P2MP
transceiver

100G P2MP
transceivers

DSP
DAC
ADC

Tx

Rx

combiner

75G

25G

25G

combiner

DSP
DAC
ADC

Tx

Rx

 D4.3 GA Number 101016663

9

Figure 3. Normalized traffic profiles: Residential, Office, Transport and Comprehensive.

As observed, different traffic profiles exhibit peak and valley times at different times of the day.

For example, the residential profile has its peak time between 8 p.m. and 23 p.m. while the office

traffic profile shows the peak between 9 a.m. and 4 p.m. Interestingly, the transport traffic

pattern has two peaks, one before office hours plus another one after work.

As shown, the four profiles have different peaks and valleys, and combining them wisely (using

clustering) will result in a reduction of P2MP trees and equipment. In general, selecting the

optimal groups/clusters whose sum is below 16 x 25G SCs (for 400 Gb/s P2MP tree

configurations) can be thought of as an extension of the classical bin-packing/Knapsack problem,

which is known to be NP-complete (i.e., NP stands for nondeterministic polynomial-time

complete) and very hard to solve for computers as the problem grows in size. Instead, the next

subsections define two clustering techniques to find groups of uncorrelated traffic profiles while

satisfying the requirement that the number of SCs demanded is always below the maximum

m=16 throughout the day.

3.1.4 CA1: Clustering of uncorrelated traffic sources

In Clustering Algorithm no. 1 (CA1), we are mostly interested in designing a clustering-based

algorithm that takes into account only daily traffic profiles that benefit from the dynamic

behavior of coherent P2MP pluggable transceivers. In this sense, the correlation between daily

profile traffic patterns can be used as a distance metric, where two nodes with uncorrelated

traffic patterns will be considered of short distances, while nodes with correlated peak times

shall be avoided or penalized with a high distance value. To this end, let dtraff(vi,vj) be the distance

between the leaf nodes vi and vj with traffic patterns ti and tj as:

𝑑𝑡𝑟𝑎𝑓𝑓(𝑣𝑖 , 𝑣𝑗) =
1 + 𝑐𝑜𝑟𝑟(𝑡𝑖 , 𝑡𝑗)

2
 (2)

Essentially, the minimum distance between nodes nodes vi and vj (null distance) occurs when

their traffic patterns are totally uncorrelated (i.e. correlation = -1) and the maximum distance

(distance = 1) occurs when their traffic profiles are totally correlated (correlation = 1). Here, the

traffic pattern for a node is a 1 x 24 row vector whose elements represent the hourly traffic

volume offered throughout the day.

 D4.3 GA Number 101016663

10

3.1.5 CA2: Clustering of uncorrelated traffic sources and short geographical distance

In a second version, the clustering algorithm (CA2) must find groups of nodes that favor

uncorrelated traffic patterns, but the nodes participating in the same group must be as close as

possible in terms of geographical distance. To take into account both aspects, we define a new

distance metric dtot(vi,vj):

𝑑𝑡𝑜𝑡(𝑣𝑖 , 𝑣𝑗) = 𝛼 𝑑𝑡𝑜𝑡(𝑣𝑖 , 𝑣𝑗) + (1 − 𝛼)𝑑𝑔𝑒𝑜𝑚(𝑣𝑖 , 𝑣𝑗) (3)

Here, dtot(vi,vj) takes into account both distance metrics: traffic-based and geographical distance.

The latter one is computed based on the GPS coordinates of the nodes, normalized among all

nodes, that is, the two furthest apart nodes have a geographical distance equal to one. With this

approach, α is a weighting value (α in [0,1]) that allows the network planner to give more

importance to traffic (α close to 1) or to the location (α close to 0) of the nodes participating in

each P2MP tree. In scenarios where the network operator has some freedom to interconnect

distant-apart nodes, then α can be closer to 1 allowing the clustering algorithm to better exploit

uncorrelated traffic patterns among the total number of nodes.

3.1.6 Simulations and results

As shown in Figure 3, different traffic profiles have different busy moments and quiet hours; in

general, the peak-to-average values range between 2 and 3. Following this behavior, we have

simulated 1,000 nodes with random traffic profiles and uniformly distributed random peak

values U(10, 100) Gb/s plus a percentage of random traffic values (10% and 30% of peak traffic)

to create a diverse dataset with different traffic profiles and demand volumes. Figure 4 shows

an example of the resulting traffic offered by four simulated nodes (in Gb/s) at different times

of the day for both 10% and 30% traffic variability with respect to the normalized profile. As

shown, the 30% case shows more traffic fluctuations than the 10% case and should be

considered a worst-case scenario of nodes with high traffic fluctuations.

Figure 4. Daily traffic profiles with low traffic variability (10%) and high-traffic variability (30%).

The scenarios, algorithms and simulations have been programmed using R.

3.1.7 Simulation #1: without geographical coordinates

In this first simulation, we find the best combination of nodes that minimize the number of P2MP

trees, taking into account only the traffic profile (i.e., 𝛼 = 1) regardless of their location. The

1,000 simulated nodes are grouped into 171 clusters (i.e., P2MP trees), that is, an average of

5.85 nodes per cluster.

 D4.3 GA Number 101016663

11

Figure 5. Daily traffic profiles for clusters/trees no. 1, 2, 3, and 4 for simulation case 1.

Figure 5 shows four different clusters/trees. Essentially, the blue lines represent the traffic of

each leaf node in the P2MP tree (not in Gb/s but in the number of subcarriers of 25G) at different

times of the day; the red line is the sum or aggregated number of subcarriers for all nodes in the

same P2MP tree arriving at the hub node. As shown, the uncorrelated nature of individual flows

is leveraged to reach the maximum number of SCs at different times of the day. As shown, the

summation of the number of subcarriers of individual leaf nodes does not exceed the limit of 16

subcarriers offered by the hub node at any time of the day. The first cluster depicted in Figure 5

comprises seven P2MP leaf nodes of the simulation. The second, third, and fourth clusters

include 7, 5, and 4 leaf nodes respectively. Remark that the figure shows examples of only 4 out

of 171 clusters or trees decided by the clustering algorithm for the 1,000 nodes.

Table 1 further details the number of SCs required by each P2MP leaf node in cluster/tree no. 2

at different times of the day Figure 5 (top) and the total sum of SCs needed to satisfy all traffic

demands. As shown, the demands for 25G SCs vary significantly from one hour to the next,

highlighting the benefits of having dynamic bandwidth allocation of 25G modules over different

times. For example, in this cluster, at hour h12 (i.e., 12 noon), node 3 needs to jump from 3 SCs

up to 5, while node 1 can reduce from 4 to 3. On the other hand, node 7 typically needs only 1

SC except at some hours of the day when it requires 2 SCs, but these are valley hours for other

nodes. In all cases, the total number of SC never exceeds m=16.

Table 1 shows the number of P2MP trees created by CA1 for different values of the ranges of

peak traffic and the variability of the traffic with respect to the peak. The comparison is against

a largest-fit heuristic assignment algorithm which assigns nodes to clusters by sorting them from

largest to smallest demands and filling the tree until the maximum number of SCs is reached. As

 D4.3 GA Number 101016663

12

shown, our clustering algorithm CA1 always creates a number of P2MP trees that is considerably

smaller than such a largest-fit heuristic, with tree savings up to 18% in many cases.

Table 1 Simulations CA1 in 1,000 node networks

Peak (Gb/s) Variability CA1 Largest-fit Savings

U(10,100) 30% of peak 172 trees 183 trees 6.0%

U(50,100) 30% of peak 220 trees 250 trees 12.0%

U(10,150) 30% of peak 257 trees 278 trees 7.6%

U(10,100) 80% of peak 250 trees 278 trees 5.8%

U(50,100) 80% of peak 333 trees 397 trees 16.1%

U(10,150) 80% of peak 440 trees 520 trees 18.2%

As shown in Table 1, when traffic variability is very high, the number of P2MP trees required is

between 250 and 440, more than double than in case with less variability (172 to 257 trees).

Still, the largest savings in the number of trees is achieved when traffic demands are highly

variable (80% variability in the table) since the clustering algorithm outperforms at finding

uncorrelated traffic profiles and better squeezes the dynamicity of P2MP technology.

3.1.8 Simulation #2: with GPS coordinates

In this second scenario, we introduce GPS coordinates to the nodes, forcing the clustering

algorithm to also take into account the location of the nodes to find a balance between the

nodes with uncorrelated traffic patterns and their geographical distance. The peak traffic for

each node is randomly selected from a uniform distribution U(10,100) Gb/s and the variability

is 80% of the peak in all cases. In this case, networks with 1,000 nodes are simulated, again

compared with the largest-fit heuristic explained in the previous section.

The nodes are randomly located in a grid with different sizes, as specified in Table 2. This table

also shows the number of trees obtained by CA2 and the savings with respect to the largest-fit

heuristic for different values of α. The α parameter has a critical impact on savings since, as

observed, it allows a maximum of about 5.6% savings regarding the number of P2MP trees down

to 0% savings if the clustering algorithm weights zero (i.e., uncorrelated traffic patterns is not

relevant) and only the minimum geographical distance is considered.

Table 2 Simulations CA2 in 1,000 node networks

Peak (Gb/s) Variability α CA2 Largest-fit Savings

U(10,100) 80% of peak 1 162 trees 172 trees 5.8%

U(10,100) 80% of peak 0.75 163 trees 173 trees 5.2%

U(10,100) 80% of peak 0.5 164 trees 172 trees 4.6%

U(10,100) 80% of peak 0.25 169 trees 172 trees 1.7%

U(10,100) 80% of peak 0 172 trees 172 trees 0%

3.1.9 CAPEX savings: P2MP trees vs fixed P2P transceivers

Next, we compare the P2MP architecture with CA2 dimensioning against a hypothetical

dimensioning employing P2P pairs of transceivers interconnecting access nodes directly to

aggregation nodes. In such a fixed P2P setting, no dynamic allocation/sharing of bandwidth can

be leveraged, and each P2P link must be dimensioned to the peak hour.

Following the cost model of [Hos22], we consider the following normalized cost units (CU) for

each P2P transceiver: C10G=1 CU, C100G=5 CU, C200G=8 CU, C400G=12 CU for 10G, 100G, 200G and

400G fixed P2P transceivers respectively. For the cost of P2MP trees, we assume that high

 D4.3 GA Number 101016663

13

bitrate 400G P2MP transceivers have the same cost as in fixed P2P, that is 12 CU, while low-

bitrate transceivers cost one half, that is 6 CU, in line with [Hos22].

Figure 6 shows an evolution of total cost (in CU) for interconnecting 1,000 nodes, either using

P2MP or P2P technologies. The bars represent the total cost when each leaf node offers a traffic

volume uniformly distributed U(10,50) (30 Gb/s on average), then U(50,100) (75 Gb/s on

average) and finally U(100,150) (125Gb/s on average). These 30, 75, and 125 Gb/s represent

traffic values of ACOs serving small neighborhoods (say 10,000 households offering 3 Mb/s on

average per household [Her19], and their evolution in the short term (after three years) and

medium term (after five years). As shown, the total cost of using P2MP technology is always

smaller than that of P2P technology.

Figure 6. Total cost evolution in the short and medium term for 1,000 nodes: P2MP vs P2P

technology.

Thus, in conclusion, we have shown the applicability of Machine-Learning based clustering

techniques to find groups of nodes whose aggregated traffic demands are best suitable for m x

25 Gb/s P2MP topologies featuring digital subcarrier multiplexing. The clustering algorithm

takes into account both uncorrelated daily traffic patterns and distance between the nodes and

finds groups of nodes for building point-to-multipoint trees with low computational complexity.

This algorithm has been tested on different simulated scenarios showing that the clustering

algorithm allows about 10% savings in the number of trees with respect to other tree assignment

heuristics.

Finally, when the tree clustering dimensioning algorithm is compared against a network plan

based on fixed P2P transceivers, important equipment reductions are achieved thanks to the

dynamic bandwidth assignment allowed in point-to-multipoint trees. This implies capital

expenditure savings between 40 and 50% approximately with respect to fixed P2P transceivers

dimensioned to support peak traffic.

3.2 REINFORCEMENT LEARNING BASED ROUTING FOR PACKET-OPTICAL NETWORKS WITH

MULTILAYER MEASUREMENTS
Path optimization for traffic flows is a method available to enhance the quality of experience

(QoE) perceived by users. Network automation facilitates this goal by monitoring and collecting

telemetry information and network states for both optical and packet-based data. Advanced

AI/ML, or other intelligent algorithms are then applied to evaluate network performance.

Subsequently, decisions are made, and actions are taken over the network to prevent or correct

 D4.3 GA Number 101016663

14

possible performance issues that affect perceived QoE. This process is commonly referred to as

closed-loop automation. Network automation is supported by various processes, including the

implementation of SDN, aimed at moving towards a zero-touch network and service

management approach [GALL22]. While having valid and up-to-date information is important,

choosing the appropriate intelligent model to detect and correct performance problems allows

for making the best decisions to optimize network operation.

In this section, we focus on the second stage of zero-touch networking: optimal path decision

based on both optical and packet-based telemetry information, using the well-known RL

methodology, which enables optimal network configurations by allowing the control plane to

learn from its interactions with the network and make decisions without human intervention. In

the past, RL has been proposed to enable ZTN by providing the network with the ability to learn

from its own experience and make decisions without human input [IAC22]. Several good surveys

in this area are available [BAR20, HER23, MAM19].

In particular, we provide a methodology for generating rewards in an RL environment, where

such rewards are based on both optical telemetry information (i.e., pre- Forward Error

Correction (FEC) Bit Error Rate (BER)) and packet routing measurements (i.e., latency and queue

occupation). Open-source code is also provided for the interested reader willing to replicate the

experiments and incorporate new features into the algorithm [GAR20]. We use the igraph library

for building network topologies and an implementation of the Q-learning algorithm for finding

the optimal routing policy in a packet-optical network where a Path Computation Elements (PCE)

decides the best route selection for every source-destination pair, using both optical metrics

(measured pre-FEC bit error rate) and packet latency measurements (including propagation

delay and link load).

The decision to employ Q-learning in addressing optical network routing challenges is grounded

in its suitability for environments characterized by dynamic and stochastic nature. Optical

networks, with their intricate configurations and the necessity for real-time adaptability, present

a problem space where the state and action spaces can be vast and complex. Q-learning's model-

free property allows for direct learning from the environment, making it ideal for optimizing

routing decisions in the face of fluctuating network conditions without the need for a predefined

model of the network's behavior. This adaptability is crucial for enhancing resource allocation,

minimizing congestion, and improving fault tolerance within optical networks. The code is

publicly available in Github for further developments by the research community [GAR20].

3.2.1 Detecting convergence episode in Reinforcement Learning

An essential aspect of RL that enhances the efficiency and reliability of algorithms, such as Q-

learning, is the concept of convergence. Convergence in the context of RL signifies the point at

which the algorithm's learning stabilizes, and its predictions (or decisions) no longer undergo

significant changes. This stability is crucial for ensuring that the algorithm can reliably guide

decision-making processes, such as optimal routing in network topologies.

The detection of convergence is pivotal for several reasons:

• Reliability: It signals that the algorithm has sufficiently explored and exploited the
environment to make consistent decisions.

• Efficiency: It helps in determining the point beyond which further training might not
yield significant improvements, thus saving computational resources.

• Benchmarking: Knowing when an algorithm converges is essential for comparing the
effectiveness of different strategies or parameter settings.

 D4.3 GA Number 101016663

15

To detect convergence in our project, we employ a function that analyzes the progression of Q-

values across episodes to identify the point at which these values stabilize. Here's a detailed

explanation of the convergence detection process implemented in the code:

• Threshold Setting: A threshold value is predefined to determine the acceptable level of
variation in Q-values for the algorithm to be considered as having converged. In our
case, this threshold is set to 0.01, indicating that changes in the Q-values below this level
signify convergence.

• Q-table Analysis: The function starts analyzing Q-tables from the 21st episode onwards.
This delay allows the algorithm some initial episodes for exploration and learning before
checking for convergence.

• Previous Q-tables Comparison: For each current Q-table, the function retrieves the 20
previous Q-tables and calculates their average. This moving average approach helps in
smoothing out fluctuations and focusing on the overall trend in the Q-values.

• Convergence Criterion: The convergence is detected by comparing the current Q-table's
sum of Q-values against the average sum of the previous 20 Q-tables. If the squared
difference between these two sums is less than or equal to the threshold, the algorithm
is considered to have converged.

3.2.2 Simulations and RL algorithm

Example on a small network topology

In the context of our study, we examine a network topology as depicted in Figure 7, which is

structured around 8 interconnected nodes and 9 links. This topology is representative of a

simplified model of an optical network, where nodes can be considered as switches or routers,

and links represent the physical or logical connections between these nodes.

Figure 7. Eight-node topology example with link metrics

Furthermore, we assume that all nodes report telemetry measurements regularly to the control

plane, in which our RL algorithm is running to decide best routing strategies between nodes.

These measurements refer to the data collected by the nodes regarding the operational status

of each link.

In particular, each node reports: measured pre-FEC BER, which quantifies the error rate of bits

on a link before FEC is applied; and link load, denoted as BERi and i for the i-th link, which

represents the utilization of the link's capacity. Monitoring link load is essential for avoiding

congestion and ensuring efficient use of network resources. This information will be considered

 D4.3 GA Number 101016663

16

along the link distance di in kilometers, since this can affect signal quality, latency, and the need

for signal amplification or regeneration.

Such monitored data (BERi, i, and di) serve as input to the RL algorithm operation within the

control plane. The RL algorithm utilizes this data to dynamically adjust routing decisions, aiming

to optimize network performance by minimizing negative impacts such as errors and congestion.

Specifically, the algorithm assigns negative rewards (penalties) based on the reported metrics,

encouraging strategies that lead to lower BER, optimal load distribution, and efficient path

selection considering distance. The formulation of penalties could be a function of these metrics,

reflecting the cost associated with choosing a link under current conditions, as it follows:

• Propagation delay adds a penalty of di x 5 s/Km, that is, the classical 5 s/Km signal
propagation latency per kilometer of silica fiber.

• Traversing a given link also adds a latency penalty of 1 s x (1-i)-1, which is the average
transmission and queuing delay of a 1250-byte packet transmitted over a 10 Gb/s link

with load i (for a classical M/M/1 queue).

• Monitored Pre-FEC BER adds a penalty of 1000 s if the BER value of that link is 10-4 or

above; 50 s if the link's BER is in the range between 10-5 < BERi < 10-4; or a 0 s penalty
otherwise.

As shown, traversing each link adds both packet-based penalty, propagation-delay penalty, and

optical pre-FEC BER-related penalty to either encourage or discourage links in a path. This set of

rules is crafted as Reward matrices for taking action a in state s (i.e. R(s,a) state-action pair), and

inputs the Q-learning algorithm. Finally, node connectivity is also included as a bi-dimensional

Matrix P(s,s') which contains the probability of jumping from state (or node) s to s'.

Table 3 Primary Optimal Path Selection under Normal Conditions

 Destination

Source 1 2 3 4 5 6 7 8

1 - 1-2 1-4-3 1-4 1-2-5 1-2-5-6 1-4-8-7 1-4-8

2 2-1 - 2-3 2-1-4 2-5 2-5-6 2-5-6-7 2-1-4-8

3 3-4-1 3-2 - 3-4 3-2-5 3-2-5-6 3-4-8-7 3-4-8

4 4-1 4-1-2 4-3 - 4-1-2-5 4-1-2-5-6 4-8-7 4-8

5 5-2-1 5-2 5-2-3 5-2-1-4 - 5-6 5-6-7 5-2-1-4-8

6 6-5-2-1 6-5-2 6-5-2-3 6-5-2-1-4 6-5 - 6-7 6-7-8

7 7-8-4-1 7-6-5-2 7-8-4-3 7-8-4 7-6-5 7-6 - 7-8

8 8-4-1 8-4-1-2 8-4-3 8-4 8-4-1-2-5 8-7-6 8-7 -

Table 4 Secondary Optimal Path Selection under Degraded Conditions

 Destination

Source 1 2 3 4 5 6 7 8

1 - 1-2 1-4-3 1-4 1-2-5 1-2-5-6 1-4-8-7 1-4-8

2 2-1 - 2-3 2-1-4 2-5 2-5-6 2-5-6-7 2-1-4-8

3 3-4-1 3-2 - 3-2-1-4 3-2-5 3-2-5-6 3-2-5-6-
7

3-2-1-4-
8

4 4-1 4-1-2 4-1-2-3 - 4-1-2-5 4-1-2-5-
6

4-1-2-5-
6-7

4-8

5 5-2-1 5-2 5-2-3 5-2-1-4 - 5-6 5-6-7 5-2-1-4-
8

6 6-5-2-1 6-5-2 6-5-2-3 6-5-2-1-
4

6-5 - 6-7 6-5-2-1-
4-8

7 7-6-5-2-1 7-6-5-2 7-6-5-2-
3

7-6-5-2-
1-4

7-6-5 7-6 - 7-6-5-2-
1-4-8

8 8-4-1 8-4-1-2 8-4-1-2-
3

8-4 8-4-1-2-
5

8-4-1-2-
5-6

8-4-1-2-
5-6-7

-

 D4.3 GA Number 101016663

17

Table 3 shows the optimal routing policy decided by our RL algorithm for the 8-node topology

of Figure 7. The policy finds the best next hop and primary path from source to destination taking

into account the rewards for a given pre-FEC BER, propagation delay, and link load. In the

example of Figure 7, all links operate with good quality optical links, i.e., pre-FER under 10-5,

hence only propagation delay and link load contribute to finding the best primary end-to-end

path. However, if the optical quality of a link degrades (Table 4), then the RL algorithm finds an

alternative or secondary route. This is the situation observed in the table when links 3-4 and 7-

8 experience degraded pre-FEC BER. As shown, the RL algorithm finds new routes that avoid the

use of such low-quality links (marked in bold font).

Extended example on a medium topology: Tokyo MAN

Figure 8 shows the 23-node MAN topology for Tokyo [TAC23] for testing our algorithm.

Figure 8. Tokyo Topology

In this detailed examination, given the extensive scale and intricate nature of the network

topology, our analysis will be concentrated on a select number of routing paths rather than the

entire network. Key routes, including but not limited to the journey from Router 1 to Router 22,

will be scrutinized. The optimal paths for these specific routes under normal conditions (primary)

are depicted in Table 5, that also includes secondary routes after degradation of links 1-6, 1-4,

and 10-11.

Table 5 Optimal Policy: primary (in normal operation) and secondary (after degradation of links

1-6, 1-4 and 10-11 for the Tokyo Topology)

From To Primary Reward Secondary Reward

1 22 1-6-7-22 -123.55 1-5-18-21-22 -151.00

4 7 4-1-6-7 -121.88 4-5-18-21-7 -157.61

4 11 4-13-10-11 -121.01 4-13-12-11 -122.83

1 19 1-4-16-19 -101.81 1-5-16-19 -108.21

To further validate the efficiency and adaptability of our Q-learning algorithm, we have

incorporated a convergence analysis for the Tokyo MAN topology. The convergence graphs

(before and after degradation of links), as shown in Figure 9 (left) and Figure 9 (right) illustrate

the algorithm's progression towards a stable state of learning across episodes. This graph is

critical for understanding how quickly and effectively our algorithm adapts to the complex

network environment of the Tokyo topology.

 D4.3 GA Number 101016663

18

Figure 9. Convergence of RL algorithm before (left) and after (right) link degradation for the

Tokyo topology

The Y-axis represents the squared difference of Q-values between episodes, which is an

indicator of how much the Q-values are changing between successive episodes of learning. The

X-axis shows the number of episodes, which are iterations of the learning process where the

agent interacts with the environment and updates its Q-values. Let us provide more information

on the first convergence graph:

• Initial Learning Phase (Episodes 0-100): The plot starts with a sharp peak, indicating
significant changes in the Q-values between the initial episodes. This behavior is typical
in the early stages of Q-learning as the algorithm is exploring the environment and
updating its knowledge base with new experiences.

• Rapid Convergence Phase (Episodes 100-585): After the initial peak, there is a rapid
decline in the squared difference of Q-values, suggesting that the algorithm is quickly
learning from its interactions with the environment. The steep slope of the curve reflects
the Q-learning algorithm's efficiency in adapting its policy based on the received
rewards.

• Convergence Point (Episode 585): The plot levels off around episode 585, marking the
convergence point of the algorithm. At this stage, the changes in Q-values have
decreased to a level below the predefined threshold, indicating that the algorithm's
policy has stabilized and is consistently making similar decisions across episodes.

• Post-Convergence Phase (Episodes 585-2000): Beyond episode 585, the graph shows
minimal fluctuations around what appears to be a horizontal line close to zero. This
horizontal trend indicates that the Q-learning algorithm's Q-values have stabilized and
that the agent's policy is no longer changing significantly with further learning. The
algorithm has effectively learned the optimal policy given the environment and the
reward structure it has been interacting with.

The same analysis goes for the second graph, in which the convergence point occurred at

Episode 497.

Extended example on a large topology: Milano MAN

Let's now take a look to an even larger topology. Figure 10 shows a 52-node MAN topology that

closely represents the city of Milano.

 D4.3 GA Number 101016663

19

Figure 10. Milano topology

In this case, given the even more extensive scale of the network topology, our analysis will be

again concentrated on a select number of routing paths rather than the entire network. The

optimal paths for these specific routes under normal conditions (primary) are depicted in Table

6 that also includes secondary routes after degradation of links 1-6, 1-4, and 10-11.

Table 6 Optimal Policy: primary (in normal operation) and secondary (after degradation of links

5-6, 7-23, 22-41, 29-30 for the Milano Topology)

From To Primary Reward Secondary Reward

5 22 5-6-7-22 -121.45 5-18-19-20-6-7-22 -248.52

7 50 7-22-41-50 -1944.66 7-6-21-40-51-50 -2121.94

13 32 13-29-30-31-22 -135.63 13-4-5-16-15-32 -176.65

44 52 44-43-23-7-6-20-52 -221.95 44-9-8-1-2-6-20-52 -296.21

In this case, we can also further validate the efficiency and adaptability of our Q-learning

algorithm with a convergence analysis. The convergence graphs (before and after degradation

of links) in this case are the ones delineated in Figure 11. Before degradation, convergence

occurred at Episode 1270; and after degradation it happened at Episode 1331.

Figure 11. Convergence of RL algorithm before (left) and after (right) link degradation for the

Milano topology

As shown, RL algorithms are very suitable for finding optimal routing policies taking into account

different physical and optical metrics (link distance and pre-FEC BER) and congestion-based ones

(link load). The RL algorithm is open-source and can be modified to enforce finding optimal paths

based on other metrics, just by assigning rewards (or penalties) to different links based on speed

or power consumption. Future work will include the application of the algorithm to other

 D4.3 GA Number 101016663

20

topologies that incorporate different segments of the network and also adding other QoE

parameters as inputs for the algorithm.

3.3 LATENCY CONSTRAINED SERVICES
EONs have emerged as a sophisticated backbone infrastructure, pivotal for accommodating the

burgeoning demands imposed by next-generation services, such as B5G, cloud computing, and

the Internet of Things (IoT). These networks are tasked with fulfilling increasingly stringent

requirements concerning bandwidth, latency, and reliability to support a wide range of

applications. Therefore, EONs require flexible and efficient management of optical fiber

spectrum resources.

A crucial challenge addressed in EONs is the RSA problem, where the objective is to optimize the

path and spectrum allocation for lightpath requests while adhering to QoS constraints, such as

maximum tolerated latency and guaranteed bandwidth. This problem's complexity is

heightened by the need for a careful balance between efficient spectrum utilization and

satisfaction of stringent end-to-end service requirements.

DRL has proven its effectiveness in the context of RSA in EONs [Ch19]. The introduction of DRL-

based solutions represents a significant shift from traditional heuristic approaches to a more

dynamic, intelligent, and autonomous system of network control and operation. In this context,

DRL agents learn to make RSA decisions through interactions with the network environment.

These agents aim to maximize a cumulative reward that encapsulates both the efficiency of

spectrum utilization and adherence to service QoS requirements.

In this section, DRL-based strategies focusing on latency-aware RSA are presented and validated,

revealing a promising approach to enhance the dynamism and responsiveness of EONs in

facilitating diverse network services [Her23, Her22b].

3.3.1 SDN Control Plane

In the considered EON, a SDN controller oversees the entire service lifecycle, handling new

service demands, resource allocation, and network element configuration. Connectivity services

are requested through an API via the northbound interface. The SDN controller then coordinates

with an external entity for path computation. Then the computed path is sent back to the

controller, which executes the resource allocation, which includes programming transponders

and ROADMs through southbound interfaces. The external entity performing RSA decisions is

aided by machine learning models, and all network state information is stored in the Transport

API (TAPI) "Context" for the path computation entity's use. Figure 12 illustrates the architecture

and components of the SDN control plane.

 D4.3 GA Number 101016663

21

Figure 12. SDN control plane

3.3.2 DRL-based latency-aware RSA

Upon receiving a path computation request, the externalized ML-assisted PCE, in this case the

DRL agent, retrieves the EON's current state to create a precise state representation. Then, this

representation is used by DNNs to decide RSA actions. These decisions aim to fulfill connectivity

service requests by identifying feasible paths (encompassing nodes, links, and frequency slots)

while considering the network's current conditions and the bandwidth and latency requirements

of the service.

The network state used by the DRL agent is formed by several critical components that define

the current condition and operational parameters of the EONs. These components encompass:

• Source and Destination Nodes: Initial and terminal points of the requested optical

connection.

• Bandwidth Requirement: The amount of bandwidth that the service connection requires,

represented by the number of FSs needed to fulfill the demand of the connection.

• Latency Requirement: The maximum tolerated end-to-end latency for the service

connection, indicating the maximum delay that can be accepted for the connection to be

considered successful.

• Current Spectrum Utilization: This includes detailed information on the optical spectrum

available for every candidate path, particularly focusing on:

o The position of the first available FS block, providing an indication of where in

the spectrum the first unoccupied slot is located.

o The average size of available FS blocks, which offers insights into the

fragmentation and distribution of free spectrum slots.

o The total number of available FSs, giving a clear picture of how much of the

spectrum is currently unoccupied and potentially usable for new connections.

o Specific characteristics for every candidate path, including end-to-end delay and

spectrum utilization, to facilitate optimal path selection by the DRL agent.

 D4.3 GA Number 101016663

22

The DRL agent operates within a pre-defined action space, choosing one of several candidate

paths as the most suitable option for each request. It uses a reward function that considers both

the bandwidth and latency requirements of the connectivity service. The function awards

actions that allocate higher bandwidth and prioritize lower-latency connections, promoting an

optimal balance that enhances overall network performance. Specifically, the reward is a sum

of a component proportional to bandwidth demand and an inverse component of latency,

encouraging efficient and latency-aware resource allocation. The reward function is defined as

follows:

𝑅 = {𝑏 +
1

𝑙
, 𝑖𝑓 𝑠𝑢𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛

−10, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (4)

3.3.3 Simulations and Results

To evaluate the performance of the DRL approach for latency-aware RSA, two EON topologies

were used: a metropolitan network in Barcelona City Network (BCNNet) and a national core

network across Great Britain (BTNet). BCNNet includes 14 nodes and 42 bidirectional links, while

BTNet encompasses 22 nodes and 70 links, as shown in Figure 13. Both networks use identical

frequency grids supporting 100 Frequency Slots (FSs) on optical fiber links. Optical connection

requests are simulated between random pairs of nodes following a Poisson process with an

inter-arrival time (λ) fixed at 2 seconds, and service duration time follows an exponential

distribution with an average (µ), which varied to simulate different traffic loads. Bandwidth

demands are distributed among two, four, and eight FSs, with each FS requiring 12.5 GHz,

assuming a spectral efficiency of 1 b/s/Hz, which translates to a transmission rate of 12.5 Gb/s

per FS. The required latency for connection requests was uniformly generated, ranging from the

average shortest path delay to twice that value across all node pairs. For BCNNet, latency varied

between 0.30 ms to 0.60 ms, while for BTNet, it ranged from 1.25 ms to 2.5 ms. The DRL agent

employed DNNs with five fully connected hidden layers for its decision-making process.

Different DNN structures were used for the two topologies, conditioned by their number of

nodes. The policy network's output layer featured four neurons, indicating the probability of

choosing one of four candidate paths. The Adam optimizer was used for training with a 10-4

learning rate, and a discount factor was set to 0.95. Additionally, k-shortest paths first fit (kSPFF)

computed the four candidate shortest end-to-end delay paths for path selection.

(a) (b)

Figure 13. Topologies used for the experimental evaluation

 D4.3 GA Number 101016663

23

The performance of the proposed DRL-based RSA solution was compared to the traditional

kSPFF heuristic algorithm in terms of Bandwidth Blocking Ratio (BBR). The BBR is defined as the

ratio of the amount of bandwidth that could not be allocated due to blocking (unsuccessful

provisioning of connectivity services) to the total bandwidth requested by all services. A lower

BBR indicates better network performance, as it means a higher percentage of the requested

services were successfully provided.

Figure 14. Training phase of DRL RSA

To train the DRL agent, the traffic load was set to 200 Erlangs. Figure 14 shows that, as the

number of training episodes for the DRL model increased, a noticeable improvement in BBR was

observed compared to the kSPFF algorithm. This indicates the DRL model's capability to learn

and optimize its decisions over time, progressively enhancing its decision-making policy to better

accommodate diverse network conditions and connectivity demands.

Figure 15. Performance benchmarking of kSPFF and DRL RSA

The performance of the trained DRL model was also assessed against the kSPFF algorithm over

varying traffic loads, ranging from 50 to 250 Erlangs (Figure 15). For lower traffic loads (e.g., 50

Erlangs), no significant difference in BBR was noted between the two approaches. However, as

traffic loads increased, the DRL model showed a marked improvement in BBR. At a traffic load

of 150 Erlangs, the DRL approach achieved a BBR reduction of 16.20% relative to kSPFF.

 D4.3 GA Number 101016663

24

Moreover, at a high traffic load of 250 Erlangs, the DRL model outperformed the kSPFF algorithm

by reducing the BBR by around 18.35%.

These results underline the effectiveness and potential of using a DRL-based approach for RSA

in EONs. Specifically, it showcases the DRL agent’s key role in enhancing EON service

provisioning through ML-driven decisions, aiming to improve resource utilization, satisfy

stringent latency requirements, and adapt to the dynamic network scenarios.

3.4 FUNCTION PLACEMENT
The integration of computing and networking resources is pivotal for the efficient deployment

of network services that meet the diversified requirements. This challenge becomes exceedingly

complex when considering the orchestration across distributed cloud infrastructure

interconnected through EONs, especially in the context of VNF placement and the establishment

of lightpaths. Various approaches to VNF placement have been proposed, including optimization

problem solving, heuristics, and ML techniques [Vil20, Che21]. DRL is a promising ML approach

due to its ability to handle high-dimensional network states and actions, and to consider long-

term performance through a discount factor.

This section showcases the employment of DRL to tackle the intricacies of VNF placement and

service provisioning within such advanced network infrastructures. Herein, realistic network

services are represented as VNF Forwarding Graphs (VNF-FGs) with meshed VNF

interconnections and arrive and depart dynamically. DRL-based approach evidences a significant

outperformance over traditional algorithms in terms of service blocking rates [Her23b, Her23c].

3.4.1 Proposed Framework

In this scenario, VNFs need to be placed across different points of presence (PoPs) in a substrate

network. Each VNF has computational resource requirements, and the virtual links between

VNFs have bandwidth and latency constraints. The process involves mapping VNFs to PoPs and

establishing lightpaths (optical connections) between the selected PoPs to support the virtual

link requirements.

The crux of the proposed approach lies in utilizing two cooperating DRL agents. The first agent

(Path DRL Agent) is tasked with computing the optimal lightpaths between PoPs, thereby

managing the networking requirements such as spectrum (i.e., continuity and contiguity) and

latency constraints native to EONs. The interaction between these agents is critical, as the

output from the lightpath computation directly influences the decision-making process of the

second agent (Compute DRL Agent), which focuses on the strategic placement of VNFs across

available PoPs, based on computing resource availability and networking criteria. The Compute

DRL agent receives a reward of 0 for successful VNF allocation, a positive reward for complete

VNF-FG deployment based on allocated computing capacity, and a negative reward for failed

VNF deployment. Figure 16 depicts the design of the devised DRL-based solution. The solutions

provide a holistic framework for service provisioning that addresses both, computation and

optical spectrum allocation challenges in the substrate infrastructure. This dual-focused

approach ensures that all aspects of service delivery are optimized, leading to more reliable and

efficient network service deployment.

 D4.3 GA Number 101016663

25

Figure 16. DRL-based solution for VNF-FG Placement

For each service request, Compute-DRL iterates over each VNF, trying to place it on a PoP that

meets its resource requirements and the virtual link constraints. Compute-DRL takes as input

the VNF resource demands, virtual link constraints, available PoP resources, and latencies of the

computed lightpaths between PoP pairs. While the action space specifies the selected PoPs for

hosting the VNFs.

3.4.2 Simulations Scenario

The evaluation of the proposed DRL approach was conducted on the NSFNet network topology

with 14 optical nodes and 42 fiber links, shown in Figure 17(a). Each node has a PoP with 100

CPU cores, and each optical link could accommodate 100 frequency slots. Three network service

types with varying numbers of virtual network functions (VNFs), virtual links, bandwidth

requirements, and maximum delay were defined as it is shown in Table 7.

(a) (b)

Figure 17. (a) NSFNet topology and (b) Unseen network topology

2 ms
2.5 ms 2.5 ms

1 ms

2 ms

2.5 ms

1 ms

0.5 ms

6 ms

2.5 ms

3.5 ms

4 ms
6 ms

2 ms

2.5 ms

3.5 ms

5 ms

8 ms

2 ms

6.5 ms
1 ms

0.7 ms

1.75 ms

1.2 ms

2 ms

2.95 ms

1.75 ms
1.55 ms

1.6 ms

0.8 ms

1.1 ms

2 ms

1 ms

1.8 ms

1.7 ms

1.45 ms

1.1 ms

0.8 ms

1 ms

1.7 ms

1.5 ms

1.8 ms

0.8 ms

 D4.3 GA Number 101016663

26

Table 7 Network Service Types

(NSD type) # of VNFs # of VLs Bandwidth (FSs) Latency (ms)

Industry 4.0 2 2 2 5

Automotive 4 10 4 10

Media 6 20 8 15

3.4.3 Performance Evaluation

For the evaluation, Compute-DRL agent was implemented based on the Proximal Policy

Optimization (PPO) algorithm. Furthermore, some key innovations were incorporated in the

solution. A notable advancement in the DRL algorithm's efficiency is the incorporation of invalid

action masking. This technique significantly narrows down the action space for the agents by

excluding infeasible actions, thereby reducing the training time and enhancing decision-making

accuracy. It allows the DRL agent to converge faster during training. Results show that DRL agent

with invalid action masking (Maskable PPO) converges 22% faster (i.e., from 3.6 to 2.8 million

episodes) and achieves higher average rewards during training than a DRL agent without it, as it

is shown in Figure 18(a).

(a) (b)

Figure 18. Convergence of DRL-based solution, and Network service blocking rate

The experimental results also show that the DRL approach outperforms the baseline Non-

Recursive Greedy SFC Placement (NGSP) algorithm by reducing the number of blocked services.

NGSP selects the PoP with higher residual computing resources and computes lightpaths using

the k-shortest path algorithm. This is achieved through the cooperation between the two DRL

agents, where each agent focuses on solving a specific problem (spectrum assignment or

compute allocation), and the output of one agent is used as input for training the other. As can

be seen in Figure 18(b), under 50 Erlangs of request load, the blocking rate obtained from the

agent trained with Maskable PPO achieves the best performance, reducing blocking by 12.8%

compared to that of the NGSP algorithm. Maskable PPO slightly reduces the blocking rate by

0.6% compared to the agent trained with PPO.

Once the DRL training is complete, the trained model was tested on an unseen network topology

(Figure 17(b)) with 14 nodes and 22 bidirectional links to assess its generalization capability.

Figure 19(a) exhibits that the DRL-based solution significantly outperformed a heuristic

benchmark algorithm in both the original NSFNet topology and the unseen topology regarding

the service blocking rate. This demonstrates not only the efficacy of the DRL solution in

optimizing VNF placements but also its strong adaptability to different network topologies

without prior exposure. To evaluate the capability of the DRL solution to adapt and improve over

time by learning from its interactions with a dynamically changing environment, the trained

 D4.3 GA Number 101016663

27

model was used to learn in the unseen network topology. By using a pre-trained model, training

convergence is accelerated, as shown in Figure 19(b).

(a) (b)

Figure 19. (a) Network service blocking rate and training convergence in unseen topology

In conclusion, the integration of sophisticated DRL techniques paves the way for more

autonomous, efficient, and flexible network service provisioning in multi-layered network

infrastructures like those involving EONs and distributed cloud systems. Leveraging the synergy

between DRL agents helps to manage the complex demands of modern network services and

scale solutions to encompass changing network topologies, and their applicability in real

scenarios.

 D4.3 GA Number 101016663

28

4 FAILURE MANAGEMENT

The performance of optical devices can degrade because of aging and external causes like, for
example, temperature variations. Such degradation might start with a low impact on the QoT of
the supported lightpaths (soft-failure). However, it can degenerate into a hard-failure if the
device itself is not repaired or replaced, or if an external cause responsible for the degradation
is not properly addressed.

The QoT is related to the linear and nonlinear (NL) optical noise, and it can be estimated based
on a model describing the physics of propagation, e.g., the generalized Gaussian Noise (GN)
model. Additionally, effects such as aging of optical devices might severely affect the QoT. Aging
effects are usually considered by means of costly system margins. Examples include: i) the
degradation of Optical Amplifiers (OA), which can be quantified as increased Noise Figure (NF);
and ii) detuning of the lasers in the TRXs or frequency drift of the filters in Wavelength Selective
Switches (WSS), which can lead to misalignments. If those degradations (soft-failures) are not
properly handled (e.g., by retuning, repairing, or replacing the related optical device), they can
degenerate into hard-failures when the SNR reduces, and zero post-FEC error cannot be
achieved (FEC limit); this could affect a large portion of network services. Therefore, it is of
paramount importance not only to detect any QoT degradation, but also to identify the cause
and localize the device causing the degradation.

Further, a considerable effort is being paid towards disaggregating the optical layer to enrich the
offer of available solutions and to enable the deployment of solutions that better fit optical
network operators’ needs. Such disaggregation, however, tends to make network surveillance
and maintenance more complex in general, due to the absence of vendors providing support of
vertically integrated network equipment.

To support failure management, the control plane needs to be enriched with Monitoring and
Data Analytics (MDA) capabilities. Once monitoring data, notifications, and alarms have been
collected from the data plane, data analytics algorithms (e.g., based on ML techniques) can
analyze them to proactively detect the degradation, identify and localize the cause, and
anticipate hard-failures before they occur. Once detected, identified, and localized,
recommendations can be issued to the network controller so it can decide about rerouting
and/or reconfiguring the network, as well as notifying the management plane for maintenance.
Note that ML-based approaches require training and validation datasets, which makes their
practical application difficult due to key drawbacks, namely: i) limited data availability; ii) long
duration of the training and validation phases until obtaining robust and reliable ML models (this
could be accelerated by using simulation tools in sandbox domains); iii) poor adaptability in the
event of physical layer changes; and iv) reduced exportability to other scenarios/ conditions
different than those used for training.

The topic of failure management in optical networks (including anticipated detection,
identification, and localization) has been extensively explored. Previous works centered on
analyzing the QoT represented by the measured BER, spectrum, etc. for detecting failures, or
correlating alarms for localization. In contrast, the status of optical devices can be through
measures related to device parameters like optical power, gain, temperature, etc. to proactively
detect and localize potential faults and determining the likely root-cause. This approach to
failure detection, derived from the analysis of devices’ parameters, is key to really identify and
localize the failure itself.

However, it is not always possible to obtain the right value of those devices’ parameters that
can be related to the QoT, in particular in disaggregated scenarios. Note that any QoT model
uses a set of input parameters to describe the specific characteristics of the different optical
devices that participate in the optical layer, like WSSs as building blocks of Reconfigurable
Optical Add / Drop Multiplexers (ROADM), TRXs, and In-Line OAs, e.g., Erbium Doped Fiber

 D4.3 GA Number 101016663

29

Amplifier (EDFA). In such cases, ML methods can be used for finding the right value of such QoT
model’s parameters aiming at improving the QoT estimation. Our approach applies reverse
engineering from the real QoT values—collected periodically from the TRXs—to derive the
evolution of the value of QoT model’s parameters (referred to as modeling parameters) that
explain such QoT observations. We believe that, by analyzing such evolution, it is possible to
anticipate more precisely future degradations, and enable failure localization.

4.1 FAILURE DETECTION, LOCALIZATION AND IDENTIFICATION

This section details our proposed MESARTHIM methodology that targets at: i) detecting and
localizing the optical device responsible for the soft-failure; ii) identifying the modeling
parameters that explain the observed effects in the QoT; and iii) estimating the evolution of the
value of such parameters to find whether the soft-failure will degenerate into a hard-failure.
This advanced network performance analysis procedure facilitates diagnosis and network
maintenance. Furthermore, since the relation between monitored SNR and modeling
parameters is not linear, the analysis carried out in the later space (i.e., modeling parameters)
can accelerate soft-failure detection, identification, and localization. Specifically, the
contributions are:

1. The MESARTHIM methodology for soft-failure detection, identification, and localization,
modeling parameter estimation and severity estimation.

2. Network surveillance and soft-failure localization based on device modeling parameter
estimation, which is a key part of the MESARTHIM methodology.

3. Procedures for identification and severity estimation, once a soft-failure has been detected
and localized.

The discussion is supported by the experiments and numerical results.

4.1.1 The MESARTHIM Methodology

Among the effects degrading the QoT within optical systems, we consider degradations arising
from ROADMs and In-Line OAs, where a ROADM consists of WSSs and OAs. Both building blocks
face aging and non-ideal conditions. For example, although OAs are considered robust devices,
they also suffer time-varying effects like Noise Figure (NF) which might increase over time due
to the aging of the amplifier building blocks. The NF is also frequency-dependent and, as the
allocation of the spectrum might become time-dependent. Therefore, the NF can be modeled
as a time-frequency variation. The pump lasers of the EDFAs also subject to degradation, which
can be adjusted thanks to internal control loops, but which still reduces the EDFA efficiency. For
what concerns the WSSs, they might suffer temperature-dependent variations, which might lead
to frequency shift over time; furthermore, individual channels can drift as well, and both effects
can be highly detrimental in terms of QoT. We consider gradual time-varying device
degradations on OA and add/drop (A/D) WSSs in the ROADMs. Specifically, we consider that
soft-failures can be explained by one of the following events in the modeling parameters: a) NF
increase; b) maximum optical output power (P-max) decrease; and c) Optical SNR (OSNR)
degradation caused by frequency drifts of the WSSs due to temperature fluctuation.

 D4.3 GA Number 101016663

30

Figure 20. Overview of the proposed failure analytics architecture and the MESARTHIM

methodology

Our proposed architecture for soft-failure analysis is illustrated in Figure 20. The optical layer
consists of a disaggregated set of ROADMs and TRXs, and a set of optical links with a number of
In-Line OAs interconnecting ROADMs. The control plane includes: i) a Network Controller to
program the network devices, which is coordinated by the Network Management plane, and
includes network maintenance; ii) an MDA system that collates measurements from the data
plane, analyses the data and issues recommendations to the network controller, as well as
notifications regarding failures; and iii) a QoT tool based on GNPy that estimates the SNR of the
lightpaths and it is used for connection provisioning and for failure analytics.

The MDA system stores a replica of the operational databases (DB) that are synchronized from
the network controller. In addition, it collects measurements from the optical devices with a
given periodicity and stores them in a Monitoring DB; we assume that the MDA collects SNR
samples from the TRXs every 15 minutes. These measurements are used by MESARTHIM to: i)
estimate those modeling parameters related to optical devices (resources); ii) analyze the
evolution of the measured SNR and that of the modeling parameters to detect any degradation
as soon as it appears; and iii) determine the severity of the degradation based on the foreseen
impact on the performance of the lightpaths.

Figure 20 also sketches the MESARTHIM methodology implemented in the MDA system.
Specifically, the following building blocks can be identified: (i) the Surveillance block that
analyzes the SNR measurements and the value of modeling parameters to detect any
meaningful degradation (e.g., by threshold crossing); (ii) the Localization block that localizes the
soft-failure; (iii) the Find Modeling Configuration block that finds the most likely value of the
modeling parameters of a given resource, so it results into SNR values of the lightpaths being
supported by such resources similar to those that have been actually measured; (iv) the soft-
failure Identification block that, assuming a resource has been localized as the source of the soft-
failure, finds what is the modeling parameter responsible for such failure; and (v) the Severity
Estimation block that estimates whether and when the soft-failure will degenerate into a hard-
failure. In addition, two internal repositories are used: a) the Device Modeling Config DB with
the evolution of the value of modeling parameters along time for every resource; and b) the
Network Diagnosis DB that stores historical data for analysis purposes. The MESARTHIM
manager coordinates those blocks to achieve intelligent QoT analysis, as well as manages the
interface with the QoT tool. The main procedures for the different blocks of MESARTHIM are
detailed next.

4.1.2 Surveillance and Localization

In this section, we describe two different approaches for the surveillance block, named SNR-wise
that analyzes the evolution of the SNR, and Modeling-wise that analyzes the evolution of the

 D4.3 GA Number 101016663

31

value of modeling parameters. Resources affected by a soft-failure procedure are localized.
Additionally, the main procedure for the Find Modeling Configuration block is presented. Table
8 introduces the used notation. We assume that surveillance is carried out periodically, e.g.,
after at least one new SNR measurement has been collected for every lightpath in the network.
Both algorithms return the resources with the found likely modeling configuration, each with a
subset of lightpaths, indicating that some soft-failure has been detected.

Table 8. Notation for Failure management

G Graph representing the network topology.
P Set of all lightpaths
P’ Subset of lightpaths (P’⊆P)
R Set of optical devices, index r.
C Set of clusters of lightpaths with found same behavior ({<behavior, P’>})
SR Set of suspicious resources. Each element identifies the resource r and the

lightpaths that it supports (SR = {<r, P’>}).
SF Set of Soft-Failures. (SF = {<r, P’>})

SNR-wise Surveillance

This approach focuses on the analysis of SNR measurements and compares them to the SNR

estimated by the QoT tool for every lightpath, to detect any meaningful deviation (exceeding a

differential threshold). The lightpaths that exceed the differential threshold are considered

degraded and are further analyzed in terms of the behavior of the measured SNR evolution to

find a correlation among them; behavior is the result of stationarity analysis of the SNR

evolution. Non-stationary patterns (e.g., trend, periodicity), if found, are quantified (e.g., a

period interval in case of seasonality) to compose the behavior. For illustrative purposes, Figure

21 shows three examples of behavior: a) stationary (typical for lightpaths that do not exceed the

differential SNR threshold); b) gradual decay; and c) cyclic. In the case of finding groups of

lightpaths with similar behavior, common underlying resources are analyzed to localize the

responsible one for such degradation. It is worth highlighting that grouping lightpaths with

similar behavior enables localizing multiple soft-failures. In such a case, the likely configuration

parameters are estimated using the Find Modeling Configuration block with all lightpaths

supported by that resource.

Figure 21. Three examples of behavior.

Algorithm 1 describes the procedure used to find the behavior of the evolution in time of a time
series data. The algorithm receives an object x, which includes: i) the time series to be analyzed
(e.g., the SNR of a path p); ii) a window size w used for smoothing purposes; and iii) a threshold
thr used to detect a significant non-stationary behavior. The data series (Y) is smoothed (Ỹ) by
computing a moving average in non-overlapped windows of size w (lines 1-2 in Algorithm 1).
Then, the difference between maximum and minimum in Ỹ is computed and compared with the
threshold; if it is lower than the threshold, no behavior is returned (line 3). Otherwise, the
algorithm carries out an analysis to characterize the type of behavior by clearly distinguishing
between gradual degradation (gradual) and cyclic fluctuation (cyclic), as well as any other

 D4.3 GA Number 101016663

32

undefined evolution (e.g., random peaks). Specifically, if Ỹ presents an incremental or
decremental monotonic evolution, the fittest trendline (in terms of Pearson correlation
coefficient) among linear, polynomial, exponential, and logarithmic trends is computed and
returned as a parameter of the identified gradual degradation (lines 4-6). Otherwise, the
periodicity of Ỹ is computed based on the results of automated periodogram power spectral
density analysis. In case that a significant period is found, cyclic fluctuation with that period is
returned (lines 8-9), whereas other behavior is returned if neither gradual nor cyclic behavior is
found (line 10).

Algorithm 1. Find Behavior Procedure

INPUT: x OUTPUT: hasBehavior

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:

Y ← x.<time series> # snr OR evol
Ỹ ← nonOverlappingMovingAverage(Y, x.w)
if max(Ỹ) - min(Ỹ) < x.thr then return False
if isMonotonic(Ỹ) then

trendline ← computeFittestTrendline(Ỹ)
x.behaviour ← <“gradual”, trendline>

else
period ← findPeriodicity(Ỹ)
if period then x.behaviour ← <“cyclic”, period>
else x.behaviour ← <“other”, ∅>

return True

Algorithm 2. SNR-wise Surveillance Algorithm

INPUT: G, P, T, current_t OUTPUT: SR

1:
2:
3:

4:
5:
6:
7:
8:
9:

10:
11:
12:
13:

14:
15:
16:
17:
18:

P’ ← ∅
for p in P do

if getMonitoringData(p, current_t) <
SNR_threshold(p) then

P’ ← P’ ∪ {p}
if P’ = ∅ then return ∅
C = {<behavior, P’>} ← ∅
for each p in P’ do

p.snr ← getMonitoringData(p, T)
hasBehavior ← findBehavior(p)
if hasBehavior then addByBehaviorSimilarity(C, p)

if C = ∅ then return ∅ else SR ← ∅
for each c in C do

R = {<resource, P’>} ←
FindCommonResources(G, c.P’)

SR ← SR ∪ R
for each r in R do

r.evol ← ∅
for each t in T do findLikelyModelingConfig (r, t)

return SR

Algorithm 2 details the pseudocode of the SNR-wise Surveillance algorithm; it receives as input

the network graph G, the list P of lightpaths currently established in the network, the number T

of historical monitoring samples to be considered, and the current time (current_t). The

algorithm first retrieves and examines the last monitoring data available for every lightpath

looking for those with degraded SNR (lines 1-5 in Algorithm 2). In case some SNR degradation is

found, SNR-wise Surveillance proceeds with an in-depth SNR analysis carried out in two steps.

During the first step, the set of clusters C, capturing the behavior observed in the lightpaths, is

 D4.3 GA Number 101016663

33

found (lines 6-10); for this analysis, the last T monitoring samples are considered. Note that by

considering the evolution of lightpaths’ SNR, spurious measurements in one lightpath can be

detected and ignored. In the case that, at least, one set of lightpaths presents a similar behavior,

e.g., decay or periodicity (as in Figure 21), the algorithm continues with the second step. The

common resources supporting the lightpaths in each cluster c are computed and added to the

set SR of resources that are suspicious of being affected by a soft-failure (lines 12-14). Moreover,

for each common resource, a likely evolution of the input parameters is found (lines 15-17); the

estimated configuration is stored in the Device Modeling Config DB for further analysis. The

resources with the found likely configuration, each with a subset of lightpaths, are eventually

returned (line 18).

Modeling-wise Surveillance

This surveillance approach analyses the evolution of the value of modeling parameters of the

resources. In this case, the SNR measurements of all the lightpaths in the network supported by

a resource are used to estimate the most likely modeling configuration of such resource using

the Find Modeling Config block. The found modeling configuration is stored and its evolution is

analyzed to detect any meaningful degradation, e.g., a significant trend and/or variation.

Algorithm 3. Modeling-wise Surveillance Algorithm

INPUT: G, P, T, current_t OUTPUT: SR

1:
2:

3:
4:
5:
6:
7:
8:
9:

10:

SR ← ∅
R = {<resource, P’>} ←

GroupPathsByResources(G, P)
for each r in R do

for each p in r.P do
p.snr ← getMonitoringData(p, current_t)

findLikelyModelingConfig(r, current_t)
r.evol ← configDB.SELECT(r, T)
hasBehavior ← findBehavior(r)
if hasBehavior then SR ← SR ∪ {r}

return SR

Algorithm 3 details the pseudocode of the Modeling-wise Surveillance algorithm; it first
initializes the SR data structure (line 1 in Algorithm 3) and creates the set of resources with the
lightpaths that each one supports (line 2). Next, for every single resource, the algorithm uses
the last SNR measurements to find the current value of the parameters modeling the resource,
which are stored in the Device Modeling Config DB by the Find Modeling Configuration block
(lines 3-6). The behavior of the modeling parameters evolution is analyzed (by calling Algorithm
1) and, if a non-stationary pattern is found, the resource is added to the SR set (lines 7-9). It is
worth noting that this analysis could detect soft-failures that have not yet had a relevant impact
on the lightpaths (i.e., the SNR degradation threshold has not been exceeded yet), as parameters
and SNR are not linearly related.

Soft-Failure Localization

In case that the surveillance phase has identified a set of suspicious resources, Algorithm 4

localizes the soft-failures. The algorithm first removes the suspicious resources that explain the

very same set of lightpaths (lines 1-6 in Algorithm 4), as localization is not yet possible in those

cases. Next, the resources that explain the SNR of complete subsets of lightpaths are localized

and classified as independent soft-failures, iSF (lines 6-10). The rest of the suspicious resources

are related to soft-failures that affect common subsets of lightpaths, so a given lightpath can be

affected by more than one soft-failure.

 D4.3 GA Number 101016663

34

Algorithm 4. Soft-Failure Localization Algorithm

INPUT: SR OUTPUT: iSF, mSF

1:
2:
3:
4:
5:

6:
7:
8:
9:

10:

11:

for each r in SR do
Rr ← ∅
for each r’ in SR | r ≠ r’ do

if r.P = r’.P then Rr ← Rr ∪ {r, r’}

SR ← SR - Rr

iSF ← ∅
for each r in SR do

if r.P ∩ r’.P = ∅ ∀r’ SR | r ≠ r’ then

iSF ← iSF ∪{r}

SR ← SR - {r}
return iSF, SR

Finding the Most Likely Modeling Configuration

The above surveillance approaches use the FindModeling Configuration block, which estimates
the most likely modeling configuration of a given resource r. Given the ranges of feasible
configuration values 𝕍 of r, the configuration estimation problem consists in finding the most
likely values v, by minimizing the error (computed as mean squared error -MSE) between the
measured (S) and the estimated (Ŝ) SNR for the set of lightpaths being supported by r, P(r), i.e.:

min
𝑣∈𝕍

𝑀𝑆𝐸 (𝑆(𝑃(𝑟)), 𝑆̂(𝑃(𝑟)|𝑣)) (5)

Algorithm 5. Modeling Config Search

INPUT: P, r, vmin, vmax OUTPUT: <v, m>

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:

<v, m> ← configDB.getMin(); numIters ← 0
while m > epsilon AND numIters++ < MaxIters do

<vl, ml>, <vr, mr> ← configDB.getNeigbours(v)

va ← intersect(v, m, vl, ml, vmin, vmax)
vb ← intersect(v, m, vr, mr, vmin, vmax)
if va = vl then va ← (v + vl) / 2
if vb = vr then vb ← (v + vr) / 2
ma ← configDB.getConfig(va)
if ma = None then

ma ← MSE(P.SNR, QTool(P, r, va))
configDB.addConfig(<va, ma>)

mb ← configDB.getConfig(vb)
if mb = None then

mb ← MSE(P.SNR, QTool(P, r, vb))
configDB.addConfig(<vb, mb>)

<v, m> ← configDB.getMin()
return <v, m>

The SNR estimation Ŝ(·) is obtained by calling the QoT tool and thus, the optimization problem
in eq. (5) cannot be solved by traditional methods like Steepest Descent, which are based on
computing the gradient of the function to be minimized. In view of that, the
findLikelyModelingConfig() procedure uses the modelingConfigSearch() one (Algorithm 5) to
solve the optimization problem in eq. (5). The algorithm interrogates the QoT tool with different
values of the parameters and the configuration entailing the lowest error with respect to the
SNR values measured is returned. The procedure assumes that: i) the function is convex in 𝕍,
i.e., there is just one minimum that is the global minimum (tests supporting this assumption will

 D4.3 GA Number 101016663

35

be carried out); and ii) there is just one of the modeling parameters of r with a value different
than the initially found. The procedure fixes the value(s) of the parameter(s) and requests the
QoT tool to compute, with such configuration, the SNR values of the lightpaths being supported
by r. By computing the mse(·) function, the procedure determines if such configuration is likely
enough or if more queries to the QoT tool are needed.

As calls to the QoT tool are time consuming, modelingConfigSearch() targets at minimizing them;
instead of using the brute force and request the estimation of the SNR for the whole range of
possible values, the procedure uses the projection of two points to determine the next value of
the parameters to be used for the estimation. As parameters typically evolve smoothly in time
when devices are affected by a soft-failure, it also stores the last configuration(s) in the Device
Modeling Config DB; every time it is called, it uses such configurations as starting points for the
search aiming at finding the optimal solution fast.

4.1.3 Soft-Failure Identification and Severity Estimation

Let us now focus on the Soft-Failure Identification and the Severity Estimation blocks, which are
assumed to be executed as soon as degradation is detected and localized (via SNR and/or device
configuration analysis). These blocks make MESARTHIM able to generate notifications to the
network controller containing not only the list of degraded lightpaths, but also their expected
evolution and the estimated time for the soft-failure to degrade into a hard-failure.

Let us imagine that the surveillance and localization analysis presented above detected some
degradation at time t and therefore, non-empty ISR and/or MSF sets were found. In addition,
let us define state as the combination of the estimated modeling configuration of the resources
that are involved, and the SNR experienced by the supported lightpaths. With the aim of an
accurate diagnosis, it is interesting not only to analyze the current state but also to predict its
future evolution. It is for this very reason that historical data (within a pre-defined time window)
are gathered from monitoring and device config DBs and stored in the Network Diagnosis DB.
The evolution of each parameter (lightpaths’ SNR and device modeling config parameters) is
analyzed individually using time series forecasting techniques. By using different techniques
with different parametrization, several expected evolutions can be obtained as a practical way
to generate different likely projections for parameter degradation.

For illustrative purposes, let us analyze an example of the evolution of three parameters selected
from a hypothetical state: the SNR of a given lightpath affected by an SNR degradation, as well
as the NF and P-max parameters modeling an OA traversed by that lightpath. Figure 22 presents
three time-evolutions of the OA modeling parameters and SNR, and their analysis at current
time t. At this time, the failure has been correctly localized in the selected OA; however, the
cause of the degradation (either NF or P-max) is still unclear. This is the reason behind
performing the estimation and evolution analysis for all modeling parameters; such analysis is
carried out following forecasting techniques. Three curves representing the upper (fu), centered
(fc), and lower (fl) projected possible evolutions are depicted for each parameter. Based on such
projections, monitored data are evaluated and an indicator (φ) is computed and used to discard
modeling parameters while identifying the one that is the most likely to be the real cause of the
observed performance degradation. Hence, the indicator provides large values when the
modeling parameter is far from the expected behavior of an affected parameter. The obtained
indicator is accumulated with the values obtained in the previous computations, and
identification is positive when the parameter with the lowest accumulated indicator is far from
all the rest of the parameters with a significantly higher accumulated one. This evidence can be
easily observed by setting up a threshold allowing the discrimination of low and high
accumulated indicator modeling parameters.

 D4.3 GA Number 101016663

36

Figure 22. Example of identification and severity estimation at time t.

Once the Soft-Failure Identification block has found enough evidence of the modeling parameter
explaining the soft-failure, the Severity Estimation block uses the centered projection of the
evolution of such modeling parameter to estimate the likely evolution of the SNR for the
affected lightpaths (i.e., those being supported by the localized resource). Analyzing such
evolution, it is easy to check whether any lightpath would exceed a given threshold. For instance,
the minimum SNR defined by its modulation format and bit rate. The next subsections detail
these two MESARTHIM blocks.

Soft-failure Identification

Algorithm 6 is used to identify the most likely modeling parameter(s) explaining the observed
performance degradation; it receives as input the resource responsible for the soft-failure and
the number T of historical monitoring samples, and, if sufficient evidence is found, it returns the
modeling parameter identified as a potential failure.

Algorithm 6. Soft Failure Identification

INPUT: r, T OUTPUT: param

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:

v ← getModelingParameters(r)

r.evol ← configDB.SELECT(r, T)
for each i in v do

Y ← getTimeSeries(r.evol, i)
Yfit ← Y[1..T-δ]
Yeval ← Y[T-δ+1..T]
F ← fitTimeDependentFunctions(Yfit, δ)
F*=<fl, fc, fu>←selectLikelyEvolution(F,T)
r.φ[i]← φ(F*,Yeval) (Eq. (6))

v* ←selectHighIndicatorParameters(r)
for each i in v* do

r.accumφ[i]+=r.φ[i]
if r.accumφ[i]>thr then v← v\i

if |v| = 1 then return v.getFirst()
return ∅

The algorithm starts by retrieving the modeling parameters v that characterize the state of the

 D4.3 GA Number 101016663

37

resource, as well as the evolution of each modeling parameter in the last T measurements (lines
1-2 in Algorithm 6). Then, each parameter i in v is evaluated independently to compute a score
indicating how likely it is, that such parameter is responsible for the resource failure. Specifically,
the time series of the parameter i is selected and split into two portions: one with the first T-δ
data points (Yfit) used for fitting and a second one (Yeval), with the last δ measurements, used for
evaluation and indicator computation (lines 3-6) (dark grey area in Figure 22). Using the Yfit
segment, a set of time-dependent functions F, where the parameter value is modeled as a
function of time, is obtained by applying Holt-Winters exponentially-based modeling and
polynomial fitting in a wide range of degrees (e.g., from 1 to 7) (line 7). The set F contains all
functions with similar goodness-of-fit, i.e., +/- 5% of variation in terms of Pearson correlation
coefficient. Moreover, functions are evaluated in the time interval of Y to verify that trend is
always monotonic; otherwise, the function is discarded. Then, three of those functions are
selected to be the likely projections illustrated in Figure 22 (line 8). This selection contains: i) fl
(lower) and fu (upper), with the functions with the lowest and highest value at the current time,
respectively; and ii) fc (centered), with the function with the smallest number of coefficients
providing maximum Pearson correlation coefficient (+/- 5%), which is assumed to be the most
likely parameter evolution.

After obtaining the likely projections, they are compared with the trendline (computed using
the same methodology of fc) in Yeval. This comparison is carried out using an additive multi-
factorial indicator (φ) that combines several Boolean and continuous variables according to Eq.
(6), where xi represents a variable and bi the weighting coefficient for that variable.

𝜑 = ∑ 𝑏𝑖
𝑖=1..𝑛

· 𝑥𝑖 (6)

Table 9 briefly describes the considered variables, sorted in the descendent degree of
importance. Two Boolean functions are used: x1 returns True if there is no evidence of
degradation in the parameter, whereas x4 checks if any of the upper and lower projections is the
same function as the centered one. In addition, two continuous variables are defined: x2
accounts for the relative Mean Square Error (rMSE) of the data in the evaluation portion with
respect to the centered projection, whereas x3 returns the minimum rMSE of the data with one
of the projections. Note that if measurements in the evaluation portion follow a trend showing
a parameter degradation similar to the projections (preferably, the centered one), the indicator
remains low; otherwise, the indicator increases, indicating that the observed behavior differs
from the expected one and therefore, the likelihood of the parameter not to be the cause of the
failure increases.

Table 9. Indicator function components

i Description (xi)

1 [boolean] Projections fl, fc, fu do not show parameter degradation

2 [continuous] rMSE(Yeval, fc)

3 [continuous] min(rMSE(Yeval, fi)) | i = {l,c,u}

4 [boolean] fl = fc OR fu = fc

Once the indicator is computed for all modeling parameters, characterizing the state of the
resource, the selection of parameters, whose indicator is significantly higher than the rest, is
conducted (line 10). Thus, considering φmin as the minimum indicator value of a parameter, the
limit φmin+∆φ is defined as the reasonable limit for parameters with low indicator, being all
parameters above φmin+∆φ selected as those with high indicator. For the resultant set of
parameters (if not empty), the cumulative indicator is updated by adding the current one (lines
11-12). Finally, the cumulative indicator is compared with an identification threshold thr and, if
exceeded, the parameter is removed from the candidate parameter set (line 13). The
identification is considered positive when just one parameter remains as a candidate and it is

 D4.3 GA Number 101016663

38

eventually returned (line 14). Otherwise, the algorithm returns no identification (line 15). It is
worth noting that the value of thr needs to be high enough to clearly identify the parameter
without false positives.

Severity Estimation

Once a modeling parameter has been identified as the cause of the observed degradation, the
severity estimation algorithm is executed. This method uses the projection of the modeling
parameters to estimate when some affected lightpath will cross the FEC limit. Although the
severity estimation could be based on the projected evolution of the modeling parameters,
defining a threshold for each one is not easy as different lightpaths are impacted differently by
its degradation.

Algorithm 7. Severity Estimation

INPUT: r, P, T, param OUTPUT: estimatedTime

1:
2:
3:
4:
5:
6:
7:

r.evol ← modelingConfigDB.SELECT(r, T)
fc←getCenteredProjection(r.evol[param], timeWindow)
for t in [1, timeWindow] do

SNR ← Ŝ(P | fc(t))
for each p in P do

if SNR[p] < p.minSNR then return t
return INF

Algorithm 7 details the pseudocode; it receives as input the resource responsible for the soft-
failure, the list of lightpaths supported by such device, the number T of historical monitoring
samples, and the identified modeling parameter, and it returns the estimated time that the soft-
failure will cause a major impact on, at least, one of the lightpaths. The algorithm first retrieves
the last T configuration values from the Device Modeling Config DB, which are used to compute
the centered projection fc for the considered input parameter on a given time window (lines 1-
2 in Algorithm 7). The projection fc is used as the input parameter to estimate the SNR for the
list of lightpaths; in case that the estimated QoT for any of the lightpaths falls behind the
minimum SNR, the algorithm returns the estimated time of this event to happen (lines 3-6);
otherwise, it returns a large value that exceeds the considered time window (line 7).

4.1.4 Results

Experimental assessment

Being the basis of the MESARTHIM methodology, the Find Modeling Configuration has been
evaluated experimentally in the testbed depicted in Figure 23. Two commercial coherent
transponders (labeled TRX-1 and TRX-2), with optical line interface at 100G (32-GBd Quadrature
Phase-Shift Keying -QPSK), have been connected using an optical multi-span link. The pair of
transponders has been equipped with a specifically designed driver, enabling both the
configuration and the real-time monitoring of the SNR; the generated signal is filtered by a WSS
Wave Shaper device. The optical link consists of 4 spans, each realized by an 80 km single-mode-
fiber spool, for a total distance of 320 km. Five EDFAs have been used to compensate for the
power attenuation; all being the single stage with gain in the range 15-25 dB. OA1 was
configured with a constant 17.5 dB gain to compensate for the filter insertion losses and the
other OAs with a constant gain of 16 dB to compensate entirely for the fiber losses within the
span.

Two different experiments were carried out. In the first, we reproduced the effect of a filter
detuning. We configured the TRXs at 193.9 THz and the WSS with a bandwidth of 50 GHz,
collecting the estimated SNR at TRX-2. Then, we reconfigured the WSS filter, reducing the
bandwidth with steps of 2 GHz, until the operational status of TRX-2 card was down. GNPy was
used as a tool to estimate the expected QoT for the lightpath. In order to estimate the QoT,
together with the scenario that includes fiber types and span length, modeling parameters of

 D4.3 GA Number 101016663

39

the WSS, OAs and the TRXs are provided as input to GNPy; it estimates the QoT using the
generalized GN model, which considers both the ASE noise and NL Interference (NLI)
accumulation.

Figure 23. Experimental testbed.

Assuming that the device responsible for the SNR measured in TRX-2 is unknown, we run the
Find Modeling Configuration block of MESARTHIM to estimate the most likely modeling
configuration of the WSS and one of the OAs in the optical link. Figure 24 presents the results
obtained when the observed SNR is explained by a reduction in the OSNR of the A/D WSS (Figure
24a) and by an increased value of the NF in one of the OAs (Figure 24b). We observe that changes
in both modeling parameters could explain the evolution of the observed SNR in the lightpath
with minimal error, being the resulting values of the modeling parameters within a feasible
range. Note that with just one lightpath in this experiment, it is not possible to make any
localization, as any of the devices could be responsible for the observed reduction in the SNR.

Figure 24. Modeling parameter value vs. bandwidth for A/D WSS

OSNR (a) and OA NF (b)

Figure 25. SNR vs. link length

In the second experiment, we slightly changed the multi-span link scenario with respect to that
in Figure 23, by adding 5 dB attenuators before spans 2-4 emulating an additional 25 km in each
span. Therefore, the gain of OAs 3-5 had to increase to 21 dB to compensate for the increased
losses that also affected the NF of our amplifiers (which is inversely proportional to the
configured gain). The experiment was carried out in three steps, where one span was modified
at a time. For each step, we continuously collected the estimated SNR at TRX-2, detecting the
variation of the transmission metrics during the testbed evolution. Figure 25 presents the results
from the Find Modeling Configuration block when the length of the spans 2-4 was increased to
an equivalent of 105 km and consequently, the gain of OAs 3-5. At each step, the module was
able to explain the increment in the SNR of the lightpath by a reduction in the NF of the related
OA. For illustrative purposes, the estimated SNR of the lightpath that would be obtained by
keeping the NF constant is also represented in Figure 25. These two experiments assess the high
accuracy of the Modeling Config Search for estimating the modeling parameters of the devices.

The next subsections evaluate the MESARTHIM methodology through simulation.

Simulation environment

For the simulation, we selected a German-like network topology with 17 nodes and 26
bidirectional links (see Figure 26). 136 bidirectional lightpaths, representing all the origin-
destination pairs, were established through the shortest route in terms of hops. Figure 27 plots
the number of lightpaths that every link in the network is supporting (which is particularly

 D4.3 GA Number 101016663

40

important for failure localization). For the sake of simplicity in the analysis of the results, we
assume that all signals use the QPSK modulation format.

The optical data plane was simulated by a GNPy instance. We generated SNR measurements for
every lightpath by varying every modeling parameter of every intermediate OAs and A/D WSSs
in the ROADMs in the network, independently. With these measurements, a set of realistic types
of failures (use cases) affecting optical devices were reproduced by forcing the modeling
parameters of the selected devices (NF and P-max in the OAs and OSNR in the WSSs) to vary
over time. From the different variations that might happen, we focus on gradual variations, i.e.,
those soft-failures that can eventually degenerate into hard-failures. Among all possible gradual
degradations, we focus on the exponential increase (NF) and logarithmic decay (P- max and
OSNR), since both types of degradations accelerate in time and hence, it is crucial to anticipate
their detection and localization as much as possible. Finally, variability to the SNR samples was
added in the form of random noise.

Figure 26. Considered optical network
topology.

Figure 27. Number of distinct routes per link and max

number of routes for localization.

Figure 28. Modeling Config Search.

The resulting samples were stored in the simulated control plane and fed the module
implementing the MESARTHIM methodology. In the case of the SNR- wise Surveillance
algorithm, the SNR_threshold (line 3 in Algorithm 2) was set to the expected SNR for each given
lightpath minus a fixed value that exceeds the random variations introduced by the monitoring
generator.

The next subsections present the obtained results for the different procedures of the
MESARTHIM methodology based on this simulation setup.

Surveillance and Device Configuration Estimation

Let us first illustrate the convergence of the Modeling Config Search algorithm with an example
entailing two sets of lightpaths. We are interested in finding the most likely modeling config for
the OSNR of an A/D WSS and for the NF of an OA (each supporting one of the sets of lightpaths),
given its monitored SNR. Figure 28 plots the MSE as a function of the configuration value, as well
as those values explored by the algorithm for the two optical devices. The inset tables specify
the MSE values, whereby the configuration that gives the minimum MSE is finally selected. From
these results, as well as from those in the experimental assessment, we conclude that the
algorithm converges in the whole range of the true soft-failure origin, regardless of the selected
QoT parameter.

 D4.3 GA Number 101016663

41

We now focus on the evolution of the SNR over time for the defined use cases. The graphs in
the upper row in Figure 29 present such evolution, where, for the sake of clarity, we plot only
one sample of the affected lightpath. Note that only the lightpaths affected by the failure will
experience an evolution in their SNR, whereas the rest of the lightpaths will show no variation
over time other than a random one plus some uncorrelated spurious measurements introduced
by the monitoring generator. The time in the graphs is normalized, as the time-scales for the
considered soft-failures are different, ranging from days to months or even years. The evolution
of the modeling parameters is shown in the bottom-row graphs, where the actually
programmed value and the interval of values [max, min] estimated by the Find Configuration
block is plotted.

Figure 29. Evolution of monitored lightpath SNR against time and estimation of modeling

parameters.

Figure 30. Absolute and relative modeling parameter estimation error.

We observe that the range of possible values of the modeling parameters is tighter when the
value of the parameter deviates from its nominal one. In addition, the range of possible values
for the modeling parameters is different for the different parameters, being the P-max of the
OAs the one with the largest range. This might have a clear impact if the detection of the soft-
failure is performed by tracking the evolution of that parameter. Figure 30 complements Figure
29 by plotting the maximum and average error in the estimation of the modeling parameters as
a function of the magnitude of the degradation. We observe in Figure 30a that both maximum
and average P-max estimation errors are high for low degradation magnitudes (15.6% and 7.8%,
respectively). In contrast, the average error for NF and A/D WSS (Figure 30b-c) are remarkably
low and almost constant for the degradation magnitudes studied. Figure 30 also confirms the
observation regarding the error in the estimation of the value of the modeling parameters
greatly reduces with the magnitude of the degradation, which is a very promising result and it
can be exploited for soft-failure localization and identification.

 D4.3 GA Number 101016663

42

Some conclusions can be drawn from the results obtained so far: i) the proposed method for
estimating the value of modeling parameters of the devices has shown remarkable accuracy in
the experimental tests, which has been confirmed by simulation for all failure use cases; ii) in
general, the estimation interval is tighter when the impact of the value of the parameter on the
observed SNR is higher; iii) in the specific case of the maximum power of the OAs, the range of
values that result in the SNR values observed is large when the observed SNR remains around
the nominal value. However, when SNR degrades with evident trend, the correlation between
P-max and SNR becomes larger.

To help developing intuition about the differences that can be expected by analyzing the SNR of
the lightpaths and the value of the modeling parameters of optical devices, Figure 29 compares
the time to detect a degradation by analyzing the measured SNR and the value of the modeling
parameters. For the sake of simplicity, let us assume that degradation detection is performed
by threshold crossing; the threshold was set to 1 dB below the nominal SNR value for the
lightpaths, not below a minimum SNR resulting in a pre-FEC BER over 4∙10-3 for QPSK signals.
The thresholds related to modeling parameters were defined as a percentage of the variation
range given by the nominal value and the extreme value. Values are selected to reduce detecting
false degradations: i) for P-max it was set to 40% in the interval between the nominal value (20
dBm) and the extreme value (10 dBm) due to the large range of variation observed; ii) for NF of
the OAs, the percentage was set to 20% in the interval between the nominal (5 dB) and the
extreme value (15 dB); and iii) for the OSNR of the A/D WSSs, the percentage was set also to
20% in the interval between the nominal (38 dB) and the extreme value (20 dB).

With these values, the detection of the degradation in the case of the SNR of the lightpath
happened at normalized times 0.92, 0.86, and 0.86 for the P-max, NF, and A/D WSS OSNR
gradual soft-failure use cases, respectively. This contrasts with the detection at times 0.78, 0.47,
and 0.63 when the analysis was in the value of the P-max, NF, and OSNR of the A/D WSSs,
respectively, which results in anticipation between 15% and 45%. Note that such anticipation is
enabled by the different evolution of modeling parameters and their non-linear impact on the
SNR of the lightpaths.

Soft-Failure Localization

The above discussion considered the time for the detection only. Note that soft-failure location
(Algorithm 4) requires several lightpaths to find the common resources in the network topology.
When the evolution of the monitored SNR changes suddenly, SNR-wise surveillance (Algorithm
2) collects enough lightpaths to easily localize the failure; however, under a gradual degradation,
the lightpaths exceeding the threshold might be not enough for the localization.

Figure 27 includes a study of the maximum number of distinct routes that need to be considered
to unambiguously identify every link as responsible for a soft-failure, considering that longer
lightpaths will be more affected by device degradations. For the study, we selected all the links
in the network, together with an incremental number of lightpaths selected by their total length,
and fed Algorithm 4 for the (multiple) soft-failure localization (i.e., 26 soft-failures were localized
with a single execution of Algorithm 4). For the localization, not only the number of lightpaths is
important, but also their routes. We repeated the experiments with the lightpaths sorted in
inverse order, i.e., assuming that shorter lightpaths would exceed the (relative) threshold first.
The results showed that all soft-failures could be perfectly localized when the resources of the
two shortest lightpaths were analyzed.

 D4.3 GA Number 101016663

43

Table 10. Examples of Soft-Failure Localization

Failure in OA in link Frankfurt-Mannheim

Time
Degraded

paths
Common Resources

0.86 1 2 TRXs, 2 A/Ds, 1 Link

0.90 2 2 Links

0.93 4 1 Link (Failure in Frankfurt-Mannheim)

Failure in A/D WSS Düsseldorf

0.86 1 2 TRXs, 2 A/Ds, 1 Link

0.91 2 1 A/D WSS (Failure in Dusseldorf)

With the above in mind, let us now show how the SNR-wise surveillance and localization evolves
over time. Table 10 presents the results from two different failures. The first failure was in an
OA in the link Frankfurt-Mannheim (supporting 41 distinct lightpaths), and the second in the A/D
WSS in the Düsseldorf ROADM (supporting 16 distinct lightpaths). For each failure, each row
shows the detection time when the measured SNR of some new lightpaths is below the
threshold (bear in mind that the threshold is relative to the expected SNR for that specific
lightpath). However, the localization of the soft-failure is not successful until just one resource
(assuming that it is responsible for the failure) can be identified. Such identification happens at
normalized times 0.93 and 0.91 for the failures in the OA and the A/D WSS, respectively. Note
that the number of lightpaths needed to localize the soft-failure, although small, adds some
extra time that could be of paramount importance for the impact on the network.

In contrast, soft-failure localization under the Modeling-wise approach considers all the
lightpaths supported by such resource, as it analyzes the estimated evolution of the modeling
parameters by resource. In consequence, Algorithm 4 under the Modeling-wise approach can
localize the cause of degradations in their very early stages (between 31% and 49% with respect
to the SNR-wise approach).

As a final remark, it should be noted that even though the Modeling-wise approach considers all
the lightpaths supporting a given resource, unambiguous localization might still not be possible
if few lightpaths with distinct routes are established. Figure 27 shows, that for some links in the
considered scenario, unambiguous localization of a soft-failure is only possible when all
supported lightpaths are analyzed. Therefore, in case that not all these paths are established,
the localization procedure (Algorithm 4) would be unable to localize the failure. E.g., let us
consider the soft-failure in the link Frankfurt-Mannheim in Table 10 and imagine that only one
lightpath is supported by such link. Then, a degradation in that lightpath can be explained by
degradation in more than one resource. This highlights the need for additional procedures to be
applied for those scenarios which result in ambiguous localization.

Identification and Severity Estimation

Once the degradation has been localized, let us focus on the identification of the modeling
parameter responsible for such degradation. We assume that the device explaining the
observed degradation is an OA. According to the defined notation, identification performance is
clearly dependent on the configuration of all coefficients related to indicator φ. Several
configurations were tested to find the one giving the desired importance to every component,
ensuring that parameters with a high indicator are correctly selected, while guaranteeing no
false positives. Such configuration is <b1, b2, b3, b4, ∆φ, thr> = <20, 10, 2, 1, 5, 30>, which will be
used hereafter.

Figure 31 shows the obtained results for a gradual degradation caused by NF, whereas Figure 32
shows the results for a gradual degradation caused by P-max. In both cases, Figure 31a and
Figure 32a plot the evolution of the accumulative indicator with time, and the decision threshold
thr. Both indicators remain clearly under the threshold until time around 0.32, where enough

 D4.3 GA Number 101016663

44

evidence of the cause of the degradation is found. Note that the time of such identification
represents 32% of anticipation compared to the earliest time obtained for degradation
detection (at time 0.47) using a threshold on the evolution of the input parameter and 64%
compared to the earliest detection time using a threshold on the evolution of the SNR. Figure
31b-c and Figure 32b-c show the computed projections for the two modeling parameters under
study and for both failures; note that these figures are similar to Figure 22. The projections are
plotted for a long window (around 0.25 time units) for clarity purposes, although the value used
for fitting and evaluation was δ =0.03 normalized time units.
In the case that the failure is a consequence of the NF degradation (Figure 31b-c), we observe
that the centered projection fc for the NF parameter is highly accurate and clearly between the
upper and lower ones, which results in the minimum indicator parameter. On the contrary, P-
max indicates an evident but less accurate projection and moreover, fc overlaps with fu, which
increases its indicator above 5 units from the one of NF. As a consequence of this, P-max is
selected as a parameter with a high indicator, so its accumulative indicator increased.
Conversely, in Figure 32b-c the minimum indicator is that of P-max, where there is an evident
degradation for fl. Note that this indicator is much lower than that computed for NF, where no
degradation is observed, thus exceeding by far the indicator limit. In conclusion, we see how the
proposed methodology allows discriminating the actual failing parameter and perform a fine
failure identification.

Figure 31. NF Gradual Soft-Failure Identification.

Figure 32. P-max Gradual Soft-Failure Identification

We can take advantage of the identification method to implement an alternative localization
method that can be applied when not enough lightpaths with distinct routes are established in
the network. This allows the unambiguous localization of a soft-failure, as previously motivated.
In this case, we assume that only lightpaths between the two end ROADMs of the link Frankfurt-
Mannheim are established and have considered soft-failures in one of the supporting devices
(OA, TRX or A/D WSS), in line with Table 10. In this case, we execute Algorithm 6 considering a
single virtual resource that abstracts the supporting optical device types. The algorithm returns
the most probable modeling parameter among those of OA, TRX and A/D WSS, which helps to
reduce the number of devices to be analyzed manually.

Figure 33 shows the performance of the identification procedure for soft-failure localization.
Three scenarios are considered for the real cause of the soft-failure: i) gradual NF degradation

 D4.3 GA Number 101016663

45

in an OA (Figure 33a), ii) gradual OSNR degradation in an A/D WSS (Figure 33b), and iii) gradual
OSNR degradation in a TRX (Figure 33c). We observe that the accumulated score clearly
increases for the two types of devices that are not the real cause of the failure for all the analyzed
scenarios. This happens at time 0.3 in all the cases.

Finally, Figure 34 presents the obtained results for severity estimation for gradual degradation
of P-max, NF and A/D WSS OSNR as a function of the time. The plots show the evolution of the
estimated time with the real-time, where the area in grey color highlights the real-time when
the soft-failure degenerates into a hard-failure ±5%. We observe that the estimated time takes
a large value when the estimation does not observe a major impact in the selected timeWindow
for any of the affected lightpaths, and rapidly converges to the real degeneration time. In fact,
assuming that the severity is accurately estimated after two consecutive executions returning
estimated times close enough one to the other, anticipation over 42% to the degeneration time
are obtained, which leave enough time to plan the adequate maintenance operations.

Figure 33. Localization by identifying the Soft-Failure.

Figure 34. Severity Estimation.

4.1.5 Concluding Remarks

QoT estimation is typically carried out during the provisioning phase and in-operation planning
to ensure that computed lightpaths will provide zero post-FEC errors, assuming some values for
the QoT model input parameters related to the optical devices in the network. In this section,
QoT estimation was used for the reverse process, i.e., given the real measured QoT of a set of
lightpaths, we were interested in estimating the value of the modeling parameters of the optical
devices.

Because of the non-linear relation between lightpaths QoT and the value of the modeling
parameters, the ability to estimate the value of such parameters opens the opportunity to
analyze its evolution, which can be as a result of, e.g., aging, temperature variations, etc. The
proposed MESARTHIM methodology combines analysis of the evolution of the monitoring QoT
and their transformation into the estimated modeling parameters space, not only for the
degradation detection, but also for its localization, identification, and severity estimation.

After the experimental assessment of the method for estimating the modeling parameters of
the devices, the MESARTHIM methodology was evaluated through simulation. The methodology
demonstrated remarkable anticipation in failure detection and localization by analyzing the

 D4.3 GA Number 101016663

46

estimation of the value of the modeling parameters of the devices. A simple example showed
the reason behind such potentials in the different evolution of the modeling parameters and the
lightpaths SNR. In addition, accurate cause identification based on the analysis of the projected
evolution of the modeling parameters was demonstrated, which enabled the estimation of the
severity in terms of the time when the soft-failure degrades into a hard-failure. Such severity
estimation allows planning maintenance, as it largely anticipates degradation.

Table 11 summarizes the main characteristics with pros and cons of the MESARTHIM
methodology.

Table 11: Summary of the MESARTHIM Methodology

Method
Degradation Detection and Failure

Localization
Cause Identification and Severity

Estimation

Analysis in the
lightpaths’ SNR
space

• SNR-wise surveillance finds common
resources in sets of affected lightpaths by
analyzing its SNR.

• Analyzes all lightpaths. For failure
localization, the algorithm needs that
several lightpaths to be affected.

• No cause can be identified.

• QoT can be estimated based on
the projected evolution of the
SNR.

Analysis in the
devices’
modeling
parameters
space

• Modeling-wise surveillance analyzes the
value of the modeling parameters for all
network devices.

• The algorithm detects degradations and
localizes their sources very ahead in time.

• Cause identification based on
the projected evolution of the
modeling parameter of the
device where the failure is
localized.

• Severity estimation difficult to
estimate by analyzing the
evolution of the input
parameters.

4.2 RESTORATION
To meet the stringent demands of the evolving B5G communication traffic, which requires

networks to support high capacity, low latency, and ultra-high reliability, it is imperative that

optical networks must ensure effective and reliable data transport mechanisms. One critical area

highlighted for development is failure management, which is essential because outages in

optical connections can severely impact numerous users, applications and services.

Noteworthy is the growing interest in applying ML techniques to automate various control

operations in optical networks, especially in the area of failure management. Previous research

has delved into ML strategies that are both proactive (e.g., performance monitoring and failure

prediction) and reactive (e.g., failure detection, localization, and identification) [Mus19].

However, the use of ML, and more specifically Reinforcement Learning (RL), in the subsequent

restoration process of lightpaths disrupted by network failures remains an underexplored area.

This gap presents a significant opportunity for advancing the reliability and efficiency of optical

networks through intelligent automation.

This section presents the evaluation of a DRL-based agent specifically designed for the

autonomous restoration of disrupted lightpaths following an optical link failure [Her22].

4.2.1 RL agent for restoration in Optical Networks

The optical network is conceptualized as a set of flexi-grid ROADMs connected by C-band optical

links. When lightpath requests are made, specifying source, destination, and required

bandwidth or optical spectrum, a control system is tasked with handling resource selection and

allocation. This process is facilitated by a RSA algorithm, which seeks feasible paths that meet

 D4.3 GA Number 101016663

47

the lightpath requirements while adhering to the spectrum continuity and contiguity

constraints.

The RL agent has as its primary function the selection of the optimal restoration sequence from

a set of candidate solutions provided by the Global Concurrent Restoration (GCR) algorithm

during a link failure incident [Mar21]. This agent is integrated into a SDN controller, thus having

access to current network state information such as topology and resource utilization.

Upon the detection of a link failure, the RL agent retrieves the GCR candidate restoration

solutions. It then inputs these solutions into its neural network (NN), which evaluates each

solution based on a combination of features including total restored lightpaths, total restored

bandwidth, and the number of restored and unrestored lightpaths categorized by their required

bandwidth in terms of frequency slots (FS). The NN produces an output that represents the

chosen restoration sequence. The reward mechanism for the agent is directly proportional to

the amount of bandwidth restored, incentivizing solutions that maximize network restorability.

The proposed DRL agent for restoration is shown in Figure 35.

Figure 35: DRL Agent for Restoration.

4.2.2 Evaluation Setup

Dynamic requests were generated randomly, selecting end nodes for provisioning. The

bandwidth demands were uniformly distributed among 1, 2, and 4 FSs. These requests arrived

following a Poisson process, characterized by a mean inter-arrival time (IAT), with the

connection durations governed by an exponential distribution with a mean holding time (HT).

The occurrence of link failures was modeled as a Poisson process, with failure inter-arrival time

(FIAT) and failure durations following an exponential distribution with a failure hold time (FHT).

A failed link was randomly chosen within the 14-node NSFNET topology shown in Figure 35,

capable of accommodating 100 FSs. The RSA algorithm then iterated over the k shortest

candidate paths to find feasible routes for restoration, sorting these paths based on the end-to-

end delay.

The DRL agent was implemented based on the Asynchronous Advantage Actor Critic (A3C)

algorithm and underwent training across 2000 episodes, with each episode involving the

provisioning of 10,000 new connection requests. The agent used its neural network to decide

the optimal restoration sequence whenever optical links failed.

Environment

Elastic Optical Network

SDN Controller
DRL Agent

State:
- Restorability
- Restored BW
- # successfully restored conn per FSs
- # failed restored conn per FSs

Action:
- Selected Solution
from the N possible
solutions (shifted
orders)

Reward

Link Failure

N0

N1 N3

N2
N4

N5

N6 N7

N9

N8

N12

N13

N10

N11

 D4.3 GA Number 101016663

48

4.2.3 Experimental Results

The evaluation focused on the restoration capabilities, particularly across different traffic loads

and failure duration scenarios. An essential aspect of the evaluation was comparing the

restorability and the BBR of the proposed RL agent against both the GCR heuristic algorithm and

a sequential approach.

Figure 36 depicts the DRL agent's relative success in improving restorability and BBR under

different traffic loads compared to the GCR and sequential approaches. In scenarios with low

FHT=2 and low traffic loads = 200 Erlangs shown in Figure 36 (a), the DRL agent showcased an

improvement in restorability over the sequential approach and slightly outperformed the GCR

method, achieving an average restorability of 0.957 compared to GCR's 0.956 and the sequential

approach's 0.954. However, when it came to the BBR, the DRL agent only surpassed the GCR's

performance without outperforming the sequential method. The BBRs achieved by the DRL

agent, GCR, and the sequential approach were approximately 0.052, 0.058, and 0.048, indicating

a nuanced outcome, wherein the DRL agent's advancements in restorability did not necessarily

translate to superior BBR performance across all compared approaches. This may be due to the

fact that the restorability values are high and similar among the samples used in the agent

training. On the other hand, for the scenario with high FHT of 32, and a high total traffic load of

500 Erlangs, the performance of the DRL agent in terms of restorability and the BBR is presented

in Figure 36(b). In this setup, the DRL agent's restorability is comparable to that achieved by the

sequential algorithm, with a restorability value of approximately 0.837. The GCR algorithm,

however, achieves a slightly higher restorability, with a value of around 0.849, marking it as the

most effective approach in terms of restoring disrupted lightpaths under these specific traffic

conditions. The BBR values reported for the DRL agent, GCR, and the sequential algorithm are

approximately 0.135, 0.147, and 0.130, respectively. This performance suggests that while the

DRL agent manages to exceed GCR's efficiency in terms of BBR, it is not able to surpass the

efficiency of the sequential algorithm, which remains the most effective method in minimizing

bandwidth blockages under these conditions.

Figure 36: Restorability and BBR using RL agent, GCR and Sequential Approach.

By leveraging RL, more efficient pathways for restoring optical network functionality after

failures were explored, contributing to the overall resilience and reliability of optical

communication systems in the face of stringent future demands. The proposed RL-based

 D4.3 GA Number 101016663

49

solution demonstrates a capability to slightly outperform traditional heuristic algorithms in

terms of restorability, indicating its effectiveness in restoring disrupted lightpaths to maintain

network service continuity. However, when it comes to minimizing the blocked bandwidth ratio

(BBR), the RL-based approach does not consistently outperform other methods. In some

instances, its performance is worse compared to these heuristic solutions. This difficulty is partly

attributed to the simplified system model and the limited number of parameters used to train

the RL agent. There's an expectation that the RL agent would perform better in scenarios

involving higher complexity with a larger number of variables. These complex scenarios would

require understanding and capturing the correlations between various factors to make effective

restoration decisions.

4.3 FAILURE RECOVERY IN MANTRA ARCHITECTURES
The -Metaverse ready Architectures for Open Transport – MANTRA- architecture has been

defined by TIP, the main Internet Service Providers (ISP).

This architecture, following a hierarchy for controlling packet optical networks that utilize

pluggable transceivers, aims to establish a comprehensive reference control architecture for

multi-layer networks considering the utilization of IP over Wavelength Division Multiplexing

(IPoWDM) nodes. There have been different approaches how to control MANTRA architectures,

namely single (packet controller is the only one accessing the IPoWDM node, while optical

control is solely responsible for managing optical resources (ROADMs, amplifiers etc) and dual

where the optical parameters are exposed by the node. Figure 37, shows the hierarchical control

architecture that we have implemented to reproduce the approach defined by MANTRA.

At the top hierarchical level, B5G-OPEN network planner (NetP) resides that orchestrates the

network layers. Specifically, it receives on its Northbound Interface (NBI) the user-initiated

orders (e.g., activation of a new connectivity service) and, through its Southbound Interface

(SBI), it interacts with the packet SDN Controller (PckC) and with the optical SDN Controller

(OptC). The PckC and the OptC are based on ONOS. Both of them have been extended with a set

of REST-base endpoints to enable the orchestration performed by the NetP. Moreover, the PckC

has been extended with a NETCONF driver for forwarding the packet configuration, including IP

and BGP parameters received. The IP and BGP configurations received from the NetP toward

the OpenConfig agent running on the IPoWDM node. For the configuration of ROADMs, in the

optical domain, the OptC uses NETCONF drivers, build upon the OpenROADM models, available

in the master ONOS distribution.

 D4.3 GA Number 101016663

50

Figure 37: MANTRA Dual Architecture Implementation, with workflow steps for activating a

connectivity service.

The IPoWDM nodes expose the standard OpenConfig model through a NETCONF agent deployed

within the SONiC system; the emulated ROADMs exposes OpenROADM model using the same

NETCONF agent implementation. The Lumentum ROADM-20 exposes a proprietary YANG model

through a built-in NETCONF server. Finally, all the interactions among controllers have been

implemented using custom-built REST APIs building on top of the APIs natively exposed by

ONOS. Within the B5G-OPEN project there is other ongoing work for the development of a

dedicated tool to be deployed on top of the OptC translating the custom-built ONOS REST APIs

to standard T-API, however this component will be integrated in further work. The developed

software already produced several patches to the official ONOS distribution and further

contribution is planned, e.g., the REST APIs extensions for the pluggable configuration.

Figure 38 display the relevant IPoWDM node architecture. An Ethernet switch runs the SONiC

network operating system on top of the Open Network Install Environment (ONIE) environment.

In addition to the default SONiC applications (such as soniccfggen, syncd, swss, pmon, FRR, and

the Redis database) the system includes additional containerized applications: the NETCONF

agent and the coherent manager that have been specifically developed for this work. The

NETCONF agent container is employed for configuring and monitoring optical pluggables. This

agent utilizes the OpenConfig model for representing hardware components of the box including

ports and pluggables. To prevent misconfiguration problems when multiple controllers access

the node (and consequently the NETCONF agent) ownership segregation has been

implemented, through the Network Configuration Access Control Model (NCACM) solution.

NCACM has been designed to limit NETCONF access to specific operations and content in a user-

based manner. More specifically, for each configured user (i.e., packet controller and optical

controller), a set of rules is established within the NETCONF agent. These rules either permit or

deny operations (such as write or read-only) on specific prefix-based configuration sections. For

example, considering the Dual approach as defined in MANTRA, the OptC is provided with read-

only rights on the optical parameters of coherent pluggables. Similarly, PckC is provided with

writing rights on both packet ports and optical pluggables. Thus, the adoption of NCACM is a

valid and effective solution to control responsibility and preserve confidentiality.

 D4.3 GA Number 101016663

51

Figure 38: MANTRA Dual Architecture Implementation, with workflow steps for activating a

connectivity service.

The Coherent Manager container comprises the Common Management Interface Specification

(CMIS) App and the REST Interface. The CMIS App is an application that utilizes the coherent

optics Python library provided by SONiC to forward received commands received by the REST

interface toward the Module State Machine (MSM) and Data Path State Machine (DPSM) state

machines. Moreover, it is used to read the operational parameters exposed by the pluggables

(i.e., ESNR, OSNR and received power). The CMIS App directly interface to the OPTOE, which is

the driver used by SONiC to manage and monitor the coherent pluggable modules. To allow

other containers/applications to interact with the Coherent Manager, a REST interface is

exposed. Thus, the NETCONF container, exposing the OpenConfig representation of the device,

can access the pluggable modules via the REST interface allowing it to configure and monitor

the optical parameters available in the pluggable modules.

4.3.1 Common Management Interface Specification (CMIS) for Pluggable Transceiver

Management

This section presents the implementation of the CMIS version 5.0 and C-CMIS version 1.1

interfaces, including their respective regulating finite state machine. The CMIS interface, defined

by the Optical Internetworking Forum (OIF), is becoming the de-facto standard management

interface for pluggable modules. It offers a clearly defined mechanism for initializing and

managing optical (and copper) modules, while also ensuring the ability to accommodate custom

functionalities when needed. The electrically erasable programmable read-only memory

(EEPROM) within the pluggable module is organized in pages, each with read and write

capability. Each page contains a different set of information, such as: module information,

Versatile Diagnostics Monitoring (VDM), current configuration, and operational state

parameters. The initialization of the module is represented by the MSM, while the configuration

is represented by the DPSM.

The MSM, is depicted in Figure 39 (left). It defines the initialization process between the device

that hosts the pluggable module and the module itself. Once the pluggable module is inserted

into the IPoWDM box, the MSN enters the INSERTED state. Consequently, the module is

powered, and the MgmtInit transition is initiated. During this phase, the module initializes the

Memory Map to default values and sets up the management communication interface, allowing

 D4.3 GA Number 101016663

52

the host to eventually manage the module. After that, the module enters the ModuleLowPwr

state, during which the host can configure the module using the management interface to read

from and write to the management Memory Map. If the operation is successful, the

PowerPwrUp transition is triggered, and the host is informed that the module is in the process

of powering up to High Power Mode. However, if it fails, the Resetting transition is triggered,

clearing the Memory Map, and transitioning back to the INSERTED state. When the MSN reaches

the READY state, the module is in High Power mode, and the host can initialize or deinitialize the

Data Path State Machine (DPSM). If the READY state is not reached, the ModulePwrDown

transition is triggered, and the module returns to the ModuleLowPwr state. DataPatg State

Machine (DPSM) is illustrated in Figure 39 (right). It defines the host-module interactions

required to configure the parameters within the module including transmission power,

frequency, threshold alarms, and more. The module starts in the READY state waiting for a

configuration request by the host, such as a change in frequency. When a configuration request

is received, the DPDeinitS transition is initiated. During this phase, the module performs all the

necessary de-initialization activities on all resources associated with the current configuration

within the module, and the transmission power is turned off. Once the DP_Init state is reached,

the DPInit Complete transition is triggered, and the module performs all the necessary

initialization activities on its internal resources to apply the new configuration. Afterward, the

module reaches the DP_Initialized state where it is fully operational, initialized, and ready to

transmit traffic, but it is not powered. Subsequently, the DPTxTurnON transition is triggered,

and the module is powered. If this phase is completed correctly, the module reaches the

DP_ACTIVATED state. This indicates that the new configuration has been successfully applied to

the module, and traffic can now be transmitted and received. Finally, the module is moved to

the READY state through the Prepared transition, which informs the host that the module is

ready to handle a new configuration.

Figure 39: Module State Machines (MSM) for the initialization of the pluggable modules

Coherent CMIS (C-CMIS)

The Coherent Common Management Interface Specification (C-CMIS) extends CMIS to enable

the management of digital coherent optical modules. In more detail, C-CMIS provides additional

parameters relevant to the coherent pluggable in the VDM table. Besides that, C-CMIS defines

a new set of tables for monitoring and configuring the media lanes, such as Media Lane

Provisioning and FEC Performance Monitoring.

 D4.3 GA Number 101016663

53

In 5GB-OPEN, the C-CMIS has been used to retrieve the following parameters: received power,

BER, OSNR, and eSNR.

4.3.2 Connectivity setup and Failure Recovery in MANTRAS Architectures

Workflow steps for Connectivity service

The MANTRAs architectural design, illustrated in Figure 37, shows the workflow steps for

activating a connectivity service. In particular, the request to establish a layer-2 connectivity

between the two IPoWDM node interfaces attached to ROADMs has been considered that may

imply the activation of a new digital signal rate (DSR) connectivity between a pair of coherent

optical pluggables. When such connection request arrives, NetP performs end-to-end path

computation across both the IP and optical layers, thus understanding if a new connection in

the optical layer (i.e., a new lightpath) is required or not. If a new lightpath is required, the

following steps are executed to orchestrate the connectivity setup:

a. NetP receives and processes the request;

b. NetP sends a request to Optc, for establishing a lightpath between two specific

ROADMs’ ports;

c. a) The features supported by the pluggables attached to such ports (e.g., modulation

formats, tuneability range) are communicated by the NetP within the request. Or

alternatively,

b) the OptC can dynamically read such information as defined in the Dual MANTRA’s

design. In our current implementation the NetP only includes the endpoints in the

request, and the OptC dynamically retrieves the tuneability range of the pluggables;

d. OptC performs routing and spectrum assignment and configures the lightpath in the

traversed ROADMs. In BG5-OPEN implementation, OptC uses shortest path routing and

first-fit spectrum assignment. However, it could apply impairment-aware optical path

computation, e.g., making use of external tools dedicated to physical impairment

evaluation and QoT estimation;

e. Once the lightpath is configured Optc sends notification to NetP including selected

optical parameters (i.e.,the frequency slot in the current implementation);

f. At this point NetP sends layer-2/3 configuration request to PckC, including optical

parameters to perform pluggable configuration, in BG5-OPEN implementation NetP

sends a request for an IP link specifying the pluggabble end-points and the frequency

slot to be used;

g. PckC performs the actual configuration of the coherent pluggables and layer-2/3

protocols (i.e., Ethernet, IP and BGP).

Failure Recovery service

Within the described control architecture, a failure along one fiber link is considered and three

different procedures are experimentally compared to better understand the reachable

performance, in terms of recovery time. The failure happens in the optical layer, but the

recovery can be performed involving either only the optical layer, only the packet layer, or both.

1st solution. The first solution (i.e., optical restoration) is purely applied at the optical switching

layer without the involvement of the PckC. Thus, it only involves the reconfiguration of ROADMs

while the configuration of coherent pluggables cannot be modified. This implies that the

recovery path at the optical layer must be suitable using the same frequency slot, modulation

format and transmission power. The recovery workflow is quite simple, when OptC detects the

failure. The workflow steps are as follows:

 D4.3 GA Number 101016663

54

a. (OptC computes a new path between the same endpoints, avoiding the failed link and

utilizing the same frequency slot that was previously used;

b. OptC re-configures the ROADMs to activate the new path.

2nd solution. The second solution (i.e., hybrid restoration) involves both the OptC and the PckC.

This solution typically provides much more flexibility since it allows to change the configuration

of pluggables allowing the utilization of different frequency slots and modulation format thus

even enabling the utilization of much longer paths. However, it requires coordination among the

two controllers after failure occurrence and re-configuration of pluggables, that may require

several tens of seconds. The recovery workflow is as follows, (after failure detection by the

OptC):

a. OptC computes a new path between the same endpoints avoiding the failed link;

b. OptC re-configures the ROADMs to activate the new path;

c. OptC communicates to the PckC (through NetP) the new optical parameters to re-

configure the coherent pluggable modules;

d. PckC modifies the coherent pluggables configuration.

3rd solution. The third solution (i.e., hybrid protection) is implemented minimizing the

involvement of the optical layer. It does not require heavy coordination among controllers (i.e.,

only failure notification is propagated) but it does require the pre-provisioning of an optical

backup path (including pluggables in IPoWDM nodes), thus implying waste of resources when

the network operates without failures. After failure a occurrence and detection by the OptC, the

recovery workflow is as follows:

a. OptC communicates the failure to the PckC (through NetP);

b. PckC performs a layer-2/3 configuration on working and recovery pluggables so that the

traffic is automatically redirected toward the pre-planned backup optical path using

recovery pluggables. This latter step can be implemented in different ways, considering

two alternatives:

i. operating at layer-3, the pre-planned recovery path is implemented as an

alternate BGP adjacency with higher cost, thus upon failure notification it is

enough to teardown the working pluggables so that the traffic is automatically

routed toward the backup adjacency;

ii. operating at layer-2, the backup pluggables are not attached to the VLAN

switching the traffic, upon failure occurrence the working pluggables are

teardown and backup pluggables are added to the VLAN switching the traffic.

4.3.3 Experimental Validation and Results

Testbed design

For validation and testing a dedicated packet-optical testbed has been developed, as illustrated

in Figure 40. It includes two IPoWDM nodes equipped with pluggable transceivers, two emulated

ROADMs (e.g., OpenROADM NETCONF agents running in dedicated docker containers) and one

physical ROADM (e.g., implemented using a Lumentum ROADM-20 device). The physical

ROADM (i.e., the Lumentum) is connected at the first IPoWDM node, representing the ingress

point of the lightpath. The two outgoing paths, traversing the two emulated ROADMs, are

combined in a coupler going towards the second IPoWDM node. The traffic is generated via

Spirent N4U connected to the SFP+ interfaces of the IPoWDM nodes. The two IPoWDM nodes

are implemented using a single Edgecore switch (i.e., model AS9716-32D with 32 x 400G QSFP-

DD switch ports with a Tomahawk 3 chipset) that has been sliced using two different VLANs. The

 D4.3 GA Number 101016663

55

switch is equipped with a pair of Cisco coherent optical pluggable modules (i.e., model 400G

QSFP-DD High-Power) that support a transmission rate up to 400 Gbps exploiting 16-QAM

modulation. The switch runs the SONiC operating system, in addition to the basic SONiC

components two custom-built docker containers have been deployed on the switch (see Figure

17): (i) a container implementing a NETCONF server and exposing the OpenConfig model of the

node to the optical controller; (ii) a container exposing REST APIs endpoints for performing BGP,

CMIS and CCMIS configurations, as well as, reading operation on CCMIS parameters.

The control plane is realized by three controllers (as illustrated in Figure 37): the PckC, the OptC

and the NetP. The OptC controller is based on ONOS software and runs on a workstation

equipped with Intel i7-8700 12-core 3.2 GHz clock, 32 GB RAM. NetP is java based and runs on

a VMWare VM with 8 CPUs and 8 GB of RAM. Finally, PckC controller runs on a VMWare VM

with 8 CPUs and 8 GB of RAM. PckC is in charge to configure the packet domain and the optical

pluggables interfacing to t e OpenConfig model deployed on top of the IPoWDM nodes. OptC

controls the ROADMs via NETCONF, exploiting the OpenROADM modeling of the ROADMs

devices. NetP orchestrates the operations enabling the communication of the optical

parameters necessary to configure the optical pluggables from the OptC to the PckC.

Figure 40: Top level of Testbed topology for validating connectivity and failure services in

MANTRA architectures.

Figure 41: Screenshots of GUIs of deployed controllers and hardware devices.

Figure 41 shows a collection of screenshots and pictures of the control plane tools GUIs and

deployed hardware. In particular, Figure 41(a) shows the NetP GUI illustrating the overall

network including IPoWDM nodes and ROADMs; Figure 41(b) and Figure 41(c) respectively

 D4.3 GA Number 101016663

56

report the ONOS GUI of the packet and optical controllers. Figure 41(d) illustrates the deployed

hardware, i.e., the Lumentum ROADM-20 node degree, the Finisar WSS filter and the EdgeCore

switch running SONiC operating system.

Experimental Results

Reconfiguration time of central frequency. The performance of 400ZR/ZR+ transceivers has

been first measured in terms of time required to reconfigure the central frequency. Results are

summarized in Table 12. Specifically, the optical carrier has been moved interacting directly with

the REST APIs deployed on SONiC. The frequency shifts have been performed considering both

nearby frequencies and distant frequencies in order to check whether the reconfiguration time

depends from the frequency gap. The optical configurations have been performed considering

two types of pluggable transceivers (i.e., two ZR and two ZR+ modules). For each run, two values

of time have been collected, both time intervals start when the frequency change command is

issued to the SONiC system; the first time (prompt in Table 12) is the interval from the command

issue and return the prompt; the second time (laser in Table 12) is the interval form the

command issue and the signal detection at the RX.

Considering the two ZR modules, performing a frequency reconfiguration with 2 THz gap

(passing from 193.0 THz to 195.0 THz) has taken around 10 seconds (10.39 and 9.6 seconds,

respectively) at the prompt level, while a longer time interval (around 67.6 seconds) at the laser

level. The reverse operation, passing from 195.0 THz to 193.0 THz, has presented similar time

for the reconfiguration. Even considering smaller frequency gap (from 193.0 Thz to 193.1 THz

with 0.1 THz of gap) or bigger frequency gap (from 196.0 THz to 192.0 THz, with 4 Thz of gap)

has not differently impacted the reconfiguration time.

Considering instead the two ZR+ modules, the frequency reconfiguration with 2 THz gap (passing

from 193.0 THz to 195.0 THz) has achieved similar performance in terms of prompt results

(respectively 9.78 and 9.45 seconds). However, significantly faster performance have been

experienced considering the optical transmitted signal achieving configuration time around 15

seconds (i.e., 16.15 and 15.69 seconds, respectively). The reverse operation, passing from 195.0

THz to 193.0 THz, has presented similar time for the reconfiguration, with the prompt issuing

time in the order of 10 seconds and a shorter laser activation time (respectively, 15.31 and 13.20

seconds). Even considering small frequency gap (from 193.0 THz to 193.1 THz with 0.1 THz of

gap or bigger gap (from 196.0 THz to 192.0 THz, with 4 THz of gap) has not differently impacted

the reconfiguration time, with similar values collected.

Further analyzing the results collected using the two classes of pluggable transponders (e.g., the

ZR and ZR+ modules), it is clear that ZR+ modules guarantee a faster laser activation time.

Moreover, the table shows that the (re)-configuration time interval does not depend on the gap

between the starting and stop frequencies. In addition, the collected results show that modules

of the same type present similar behavior, showing a stable and uniform configuration time.

Table 12: Tuneability performance of coherent pluggable modules within SONiC IPoWDM box.

Frequency ZR Sample 1 ZR Sample 2 ZR+ Sample 1 ZR+ Sample 2

Start Stop prompt laser prompt laser prompt laser prompt laser

193.0 195.0 10.39 67.65 9.60 67.63 9.78 16.15 9.45 15.69

195.0 193.0 9.67 67.8 9.46 70.58 9.38 15.31 9.46 13.20

193.0 193.1 9.50 69.43 9.39 69.54 9.45 15.26 9.52 15.70

193.1 196.0 9.78 68.04 9.47 69.54 9.64 15.66 9.51 19.10

196.0 192.0 9.47 71.06 9.79 67.34 9.51 15.90 9.52 15.21

 D4.3 GA Number 101016663

57

Estimation of channel bandwidth. The actual channel width generated by the ZR+ modules is

not explicitly mentioned within the pluggables data-sheet. Thus, to estimate the effective

bandwidth of the 400 Gbps channel generated by the ZR+ modules using 16-QAM modulation

format, two IPoWDM through an optical line composed of three amplified spans of 80 Km. A

Finisar WSS has been used to filter the generated signal and apply symmetric narrow-filtering of

the channel. More specifically, initially the channel is configured with 100 GHz width, then

gradually narrowed (i.e., cutting left and right an incremental portion of the spectrum) while

reading the parameters at the receiver side. The parameters are read using the REST APIs

deployed on SONiC that interacts with the C-CMIS driver.

Collected results are illustrated in Table 13, operating an optical channel with central frequency

195.5 THz. Each row of the table reports the received power, BER, OSNR, eSNR and the

operational status of the interface in SONiC. From the collected results, it is evident that the

channel continues to operate also if it is narrow filtered at 60 GHz (e.g., 20 GHz left and 20 GHz

right). Therefore, considering a flex-grid scenario, significant bandwidth can be saved by

accurately configuring the optical filters along the path with respect to the nominal value of 100

GHz.

Table 13: Transmission performance from CCMIS interface with narrow-filtering.

Central
Freq. (THz)

Bandwidth
(GHZ)

Received
Power (dBm)

BER OSNR (dB) ESNR (dB) Status

195.5 100 -16.31 0.00253 29.9 16.6 UP

195.5 90 -16.31 0.00256 29.8 16.6 UP

195.5 80 -16.36 0.00257 29.7 16.6 UP

195.5 70 -16.42 0.00276 29.5 16.5 UP

195.5 64 -16.54 0.00319 28.9 16.3 UP

195.5 62 -16.66 0.00359 28.5 16.2 UP

195.5 60 -16.72 0.00417 28.0 16.0 UP

195.5 58 -16.88 0.00728 26.6 15.3 DOWN

195.5 56 -17.03 0.01297 25.0 14.4 DOWN

Recovery time with real traffic. The experiment, which was performed on the testbed shown in

Figure 37, starts with the connectivity setup and its step reference. In particular, a layer-2

Ethernet link between the IPoWDM nodes interfaces is requested that triggers the activation of

a DSR connection between the pluggables using a central frequency of 191.900 THz and a

bandwidth of 100 GHz. Pluggables are configured for 400 Gbps using 16-QAM modulation

format. This connectivity is used to transport a 10 Gbps traffic flow generated by the Spirent

N4U traffic generator/analyzer.

Starting from this scenario, the recovery procedures are started following the three schemes

detailed in the failure recovery service Section above. Thus, the failure detection time needed

by the OptC is always neglected. However, from the experience matured in other experimental

work, one can estimate such time in the order of 100 ms. Thus, with all the recovery procedures,

the traffic is disrupted while the re-configuration procedure is on-going, that is measured

counting the number of lost packets using the Spirent tester.

Figure 42 presents the obtained results, showing the obtained time distribution over 30

experiment repetitions. Figure 42(a) refers to the optical restoration procedure. In this case, the

OptC reconfigures the connection along the longest path keeping the same channel central

frequency of 191.900 THz. In this case the traffic disruption has an average value of 2.6 seconds.

 D4.3 GA Number 101016663

58

Figure 42(b) refers to the hybrid restoration procedure that implies the re-tuning of the central

frequency, i.e., traffic is re-routed on the longest path moving the central frequency to 193.100

THz. In this case the traffic disruption has an average value of 102.6 seconds, this result may

appear not in accordance with the fact that the experiments related to reconfiguration time of

central frequency above, show that, using ZR+ modules, the time for performing frequency

reconfiguration is about 15 seconds. However, this time is measured only at the physical layer

considering the moment in which optical power is detected on the receiver side. While restoring

a real traffic flow may imply longer time due to re-alignment needed after frequency change,

thus leading to the measured values of about 100 seconds.

Finally, Figure 42(c) refers to the hybrid protection procedure, in which the OptC forwards the

failure notification to the PckC, which dynamically includes in the traffic VLAN a second pair of

coherent pluggables that were in hot backup at the IPoWDM nodes. In this case the traffic

disruption has an average value of 1.8 seconds. The measurements made show that traffic

recovery in multi-layer networks using IPoWDM nodes is still a critical feature.

Figure 42: Distribution of traffic recovery time over 30 experiments: (a) optical restoration; (b)

hybrid restoration; (c) hybrid protection.

All three solutions do indeed present critical issues. Optical restoration provides an acceptable

recovery time, with the strong requirement to use the same frequency on the backup path. This

condition is difficult to implement in a real network where, under normal traffic conditions, it

may be very unlikely to find the required channel end-to-end available. Hybrid restoration is the

most flexible solution that is certainly the best candidate solution in case of soft-failure, but

requires unacceptable recovery times in case of hard-failure. Finally, hybrid protection provides

acceptable recovery time but requires significant network overprovisioning.

 D4.3 GA Number 101016663

59

5 DIGITAL TWIN FOR THE OPTICAL TIME DOMAIN

Monitoring and real-time data analytics are key enablers for the realization of network

automation. In particular, AI/ML-based algorithms have been extensively applied to optical

communications to enhance their overall performance. Applications include identifying and

predicting optical transmission parameters to mitigate different physical layer impairments,

including both linear interference, e.g., Amplified spontaneous emission (ASE) noise, and noise

caused by the Kerr effect. In fact, one of the most active fields of application in optical networks

is for optical performance monitoring and particularly interesting are those ML-based models

that combine the characteristics of the physical system and real-time monitoring data to

produce accurate estimation of NLI noise. Other approaches receiving large attention are those

exploring deep learning (DL) techniques to extract information from complex, dense monitoring

data inputs, without knowledge of the physical characteristics. E.g., in optical coherent systems

with advanced Digital Signal Processing (DSP) techniques, the analysis of In-Phase and

Quadrature (IQ) optical constellation diagrams as images can be performed by means of training

convolutional neural networks to estimate the QoT of optical signals.

AI/ML/DL techniques usually require large data sets for training purposes to produce accurate

ML models. In addition, precise knowledge of physical input parameters is needed. Examples

include the length of the optical connection (lightpath) from Tx to Rx and the Tx launch power.

Although some physical parameters might vary with time, considering them as inputs of ML

models strongly increases the applicability of those models to real scenarios. In this regard, a

possible approach is to model individual network elements and concatenate them to create one

model for the complete lightpath. Note that model concatenation is a common approach, which

is part of other ML techniques, e.g., AE.

In this section, we propose a comprehensive solution for in-operation lightpath analysis of IQ

constellations. Specifically, the contribution is two-fold:

• A novel network functional architecture is presented. A sandbox domain is used to obtain DL

models suited for the lightpath under analysis. Models include AEs, statistical distributions of

IQ constellation points, and DNN-based lightpath metric predictors. The models are designed

to run at the Rx site, and continuously analyze lightpath’s metrics to compress monitored

constellation samples and detect potential anomalies.

• A methodology for constellation analysis based on Gaussian Mixture Models (GMM)

(supervised) and AE-based (unsupervised) feature extraction is proposed. Moreover, a

lightpath modelling approach consisting in concatenating DNN models emulating the

performance of optical components, e.g., ROADMs and optical links including intermediate

OAs, is presented and used to generate expected constellations and synthetic constellation

samples.

Two different use cases of lightpath analysis using the proposed constellation analysis and

lightpath modelling methodology are detailed. Specifically, path length and power analysis using

GMM-based and AE-based constellation analysis are proposed.

5.1 AI-BASED CONSTELLATION ANALYSIS
Figure 43 overviews the considered network architecture and will be used for describing the

main workflow; for the sake of simplicity, only the directly involved elements, like a lightpath, a

node controller and a sandbox are detailed, whereas other components have been sketched -

e.g., the SDN- or omitted to better highlight the key concepts involved in this work. Lightpath i

is considered as the entity under analysis, which is represented as a sequence of optical

 D4.3 GA Number 101016663

60

components (Tx, ROADMs, links, and Rx) supporting that lightpath. Figure 44 details the internal

architecture of the sandbox domain and node agents.

At set-up time, the SDN controller solves the Routing, Spectrum, and Transponder Assignment

before configuring the involved devices to establish the lightpath. Then, after the lightpath is

provisioned, the sandbox domain receives the lightpath’s configuration from the SDN controller

(labeled 1 in Figure 43), including its route on the optical network and some metrics. This

configuration is used in the sandbox domain to set up an accurate representation of that

lightpath to be set in the Rx agent (2 in Figure 43). Such representation is defined as a sequence

of pre-trained DL-based models that emulate the behavior of each individual optical component

that the optical signal traverses.

Figure 43. Reference network architecture.

Figure 44. Details of sandbox (a) and node agent (b).

The role of the models is different depending on the physical element they characterize (Figure

44a). For instance, the model for the Tx characterizes the output signal according to its

specifications, whereas the models for intermediate elements (ROADMs and fiber links)

propagate forward a set of features related to the signal’s constellation. Specifically,

 D4.3 GA Number 101016663

61

intermediate components introduce distortion on the constellation as a result of LI and NLI

noise. Finally, the Rx model receives the constellation features and performs additional actions

before returning the output of the model. Additionally, any relevant change affecting the

lightpath during its life-time, e.g., path rerouting, needs to be notified to the sandbox, so as to

adapt the lightpath’s representation and avoid misleading diagnosis due to mismatch between

the physical lightpath and its models.

Both constellation and lightpath analysis require from models that characterize the monitored

lightpath. Thus, anomaly detection based on comparing observed features and expected ones

coming from lightpath’s models can be carried out at the Rx. Note that this scheme highly

reduces the amount of data to be sent to the centralized elements (3 in Figure 43), as well as its

computational demand for real-time data analysis purposes. Once the lightpath is set-up and

the lightpath models set in the Rx agent, they are used for analysis. With a predefined frequency,

e.g., every 1s, the Rx samples the received constellation and gathers n IQ symbols. The sample

is then processed by the constellation analysis block in the Rx agent (Figure 44b). The aim of this

block is to extract a set of relevant constellation features that facilitates posterior analysis, as

well as compressing constellation data to be used for multiple purposes, such as model training.

These features are obtained by means of both supervised and unsupervised statistics and ML-

based techniques (details are given in following subsections). Next, the lightpath analysis block

processes the features extracted from the received constellation and analyzes key lightpath’s

configuration metrics, such as length and/or power configuration. The result of this analysis

produces a diagnostic report highlighting, e.g., whether some of the metrics does not follow the

expected behavior. The diagnostic report is processed by the manager block that implements a

set of rules and generates notifications to the SDN controller depending on the diagnosis (4 in

Figure 43).

Following the above generic architecture, Figure 45 illustrates two different use cases for

lightpath analysis. The first use case is devoted to checking whether the real length of a given

lightpath matches with the expected one (Figure 45a). This analysis is based on the fact that

both LI and NLI noise increase with path length and additionally, both affect the magnitude and

shape of the dispersion of the symbols around the expected constellation points. Therefore,

differences can be found by comparing the features of the observed constellation points,

extracted with supervised techniques, and the expected ones. A model is used to detect any

significant difference, as well as to estimate the real length.

As an example, the received constellation of a 16QAM signal is represented in Figure 45a, where

a constellation point (3+3i) is zoomed in. External constellation points get more affected by the

NLI noise since not only their shape becomes more dispersed around the central point as it

happens in presence of LI noise, but they also become more elliptical, with eccentricity and

direction of the axes that depend on the traveled distance. Let us assume that the expected

features characterize a distribution that is larger and more elliptical than the one observed. This

will be detected by the length analysis module as an anomaly in path length, specifically as a

length shorter than expected. The reasons behind that anomaly can be multiple, e.g., inaccurate

lightpath configuration, wrong sandbox domain model configuration, lack of synchronization

between SDN controller and sandbox after a path rerouting, just to mention a few. Upon the

notification of the length analysis module, the SDN controller can trigger the needed procedure

to detect and isolate the actual reason for the detected anomaly.

 D4.3 GA Number 101016663

62

Figure 45. Lightpath analysis use cases.

The second example explores a different approach to detect anomalies affecting the launch

power at the Tx side (Figure 45b). Instead of characterizing the gathered constellation through

features with the distribution of the constellation points, this use case leverages AEs to compress

constellation samples into a reduced set of latent space features in an unsupervised way. The

analysis is performed in both forward and backward directions through the AEs to quantify

relevance metrics at both the latent feature space and the input. This relevance can be tracked

over time so as to detect any drift or shift directly related to a power anomaly (e.g., power drop)

in the Tx. Note that an early detection of power anomaly can prevent degradations.

5.2 CONSTELLATION ANALYSIS AND MODELLING
In this section, we present the main procedures for constellation analysis and lightpath

modelling. In the following, we are going to consistently denote X={x1,…, xn} as an optical

constellation sample consisting of n IQ symbols. Although each symbol xi ∈ X is typically

represented as a complex number, for the sake of simplicity, it will be alternatively denoted as

a tuple of real values <xi
I, xi

Q> with the in-phase xi
I and quadrature xi

Q components, respectively.

Further, a constellation is defined by a set of constellation points P, each identified by its

expected centroid <pj
I, pj

Q>.

Supervised and Unsupervised Feature Extraction
Figure 46 illustrates the feature extraction procedure for a given 16QAM optical constellation

sample X. The procedure is used to summarize the optical constellation into a number of

supervised and unsupervised features; it also produces goodness-of-fit (GoF) metrics that allow

further evaluation of the quality and usefulness of the generated features.

Let us first focus on the supervised feature extraction approach (Figure 46a). The objective of

this approach is to generate the set of features (also referred as processed sample) Y that

summarizes X with a number of clear, unequivocal, and predefined characteristics. To this aim,

we model the constellation points as bivariate Gaussian distributions. This approach

characterizes every constellation point p∈P with a two-component vector <µI
p, µQ

p> representing

the mean position in the constellation and with a three-component vector <σI
p, σQ

p, σIQ
p>, which

captures the variance and symmetric covariance terms that the symbols belonging to the

constellation point p experienced around the expected mean.

Aiming at allowing an accurate fitting of each of the constellation points, especially when LI and

NLI noise are large and symbols are dispersed far from the expected centroid, we apply GMM

fitting for multiple and joint bi-variate Gaussian distribution estimation. GMM is initialized to

find |P| different bi-variate Gaussian distributions whose expected centroids are the ones in P.

An illustrative example is depicted in Figure 46a, where the inset values in the table are the

features Y computed from the sample and the level curves depict the bi-variate Gaussian

distributions.

 D4.3 GA Number 101016663

63

Figure 46. Feature extraction. Supervised (a) and unsupervised (b).

It is worth noting that by forcing the constellation points to be modelled as Gaussian

distributions and by selecting the expected centroids in P as initial points for GMM fitting, the

obtained features are strongly conditioned. In order to estimate how accurate the GMM fitting

is, i.e., how well they characterize the symbols dispersion around the expected mean, the lowest

(worst) likelihood value ℒ (in logarithmic scale) for one constellation point is returned as GoF

metric. The ℒ metric might have different potential applications depending on the specific use

case.

In contrast, unsupervised feature extraction (Figure 46b) aims at transforming input sample X

into a latent sample Z that accurately represents the main characteristics of X without actually

defining how to achieve such characterization (e.g., without imposing any statistical

distribution). In this case, we use an AE with 2·n inputs for the I and Q components of every

symbol in X, followed by a number of hidden layers, each with a number of hidden neurons. The

last layer of the encoder component contains m outputs and is commonly known as latent

feature space Z. The latent space is the input of the decoder component, which also contains a

structure of hidden layers (not necessarily equal to those of the encoder) that lead to a final

output layer with 2·n values, each corresponding to one of the initial encoder inputs. The AE is

trained using the mean absolute error as loss function (typical for regression applications) so

that the error between a given encoder input neuron and its related decoder output is

minimized. In this way, the encoder component codes input sample X into latent sample Z,

whereas the decoder reconstructs sample Z into the original feature space. Note that the

reconstructed sample X* differs from the original one X; such a difference, that can be quantified

in terms of relative mean square error (rMSE), is used as GoF metric (denoted ε) for

unsupervised feature extraction.

DNN-based Concatenation Modelling
Figure 47 illustrates the proposed approach to build DL-based lightpath models as a

concatenation of DNN-based component models. As illustrated in the example in Figure 47a, the

signal crosses three ROADMs (A, B, C) and optical links with different length and number of

spans. ROADMs are modelled with two WSS, and every intermediate ROADM, except the last

one before the Rx (drop), includes a booster OA that compensates for WSSs insertion losses.

 D4.3 GA Number 101016663

64

Typically, the insertion losses in the last ROADM are compensated by DSP techniques at the

digital coherent Rx. The optical links consist of fiber spans and inline OAs that compensate for

the losses of the fiber spans. We assume that the pre-OA at ROADM’s input is a part of the link

model (see the insets in Figure 47a).

The concatenation model abstracting the lightpath in Figure 47a is presented in Figure 47b. In

this case, the ROADMs and optical links in Figure 47a are modeled using DNNs. The lightpath is

modeled as an ordered sequence of: i) a Tx model, ii) an add ROADM model representing

ROADM A, iii) a 240-km link model representing fiber link A-B, iv) a transit ROADM model

representing ROADM B, v) a 450-km link model representing fiber link B-C, and finally vi) a drop

ROADM model representing ROADM C.

The Tx model includes a pseudo-random bit sequence (PRBS) generator used to generate the

initial optical constellation following a Tx configuration. Such initial constellation can be

generated using analytical equations, simulation, ML models, etc. Once the initial optical

constellation is generated, a feature extraction block computes the supervised features Y as

described in the previous section.

Models for both ROADM and link components follow a similar architecture. Those models

propagate feature set Y, modifying the mean and variance of each constellation point according

to the LI and NLI noise that the physical element introduces. Aiming at reducing the complexity

of the DNN models, a subset of relevant constellation points is selected as representative of the

impact of noise during propagation, whereas the rest are generated as a function of the

propagated points. Hence, we need to first select the reduced set of constellation points P*⊂ P.

In particular, all the features in Y that belong to constellation point subset P*, denoted as Y(P*),

are selected. Then, this reduced set of features is propagated through a DNN model specifically

trained for the component that is represented. The structure of the DNN consists in 5·|P*| input

and output features (i.e., μ and σ vectors of the selected constellation points), and a number of

hidden layers with variable number of hidden neurons each. Since the final outcome of the

model must include the whole set of features, a linear regression model mapping the

characteristics of the non-selected constellation points, denoted as Y(P\P*), as a function of

selected ones is used. This model is generic and can be shared between components of different

types; it is defined by a matrix of linear coefficients β of size 5·|P\P*| × 5·|P*| and an intercept

vector β0 of length 5·|P\P*|.

The proposed modelling approach can be also used as a lightweight optical system simulator. By

generating random samples following the bi-variate Gaussian distributions defined by Y,

synthetic constellation samples can be obtained. In Figure 47b, such random sampling is

performed to generate a synthetic optical constellation at the Rx side; however, random

sampling can also be applied after any component model, thus generating intermediate

constellations. It is worth noting that the time to generate the resulting optical constellation

samples (at the Rx and intermediate points) is noticeably short, since it entails propagating

values through a set of DNNs, i.e., only a very limited number of simple calculations is required.

 D4.3 GA Number 101016663

65

Figure 47. Lightpath example (a) and its proposed model (b).

5.3 LIGHTPATH ANALYSIS USE CASES
In this section, we detail the main algorithms to perform the two use cases of lightpath analysis

sketched in Section 5.1. The proposed algorithms use the feature extraction and lightpath

modelling procedures detailed in Section 5.2. Firstly, the algorithm to set up the lightpath

models is presented.

Lightpath Models Setup/Update
Upon lightpath provisioning or the modification of the attributes of an already in-operation one,

e.g., because of rerouting, the models for lightpath analysis need to be loaded in the Rx agent

(labeled 2 in Figure 43). Algorithm 8 details such procedure, which runs in the sandbox domain

and is triggered every time a notification is received from the SDN controller with the details of

the established/modified lightpath (1 in Figure 43). The algorithm receives as inputs: i) the

description of lightpath R, including its id and the sequence of nodes and links that composes

the lightpath from Tx to Rx, each with its own configuration attributes; ii) the connection to the

database of trained models (DB); and iii) a set of configuration parameters.

The output of Algorithm 8 is the set of models and parameters needed for lightpath analysis at

the Rx site. These output set includes: i) parameter ℒthr with the minimum threshold to consider

constellations points as accurate Gaussian distributions, ii) the statistically-based constellation

analysis (sca) model used for comparing monitored constellations with the expected one in

terms of supervised features Y; iii) an AE-based (ae) model used for compressing and analyzing

constellations using unsupervised features Z; and iv) the path metric estimation (pme) model

used to predict the path length as a function of supervised features.

 D4.3 GA Number 101016663

66

Algorithm 8. Lightpath models setup/update

INPUT: R, DB, params OUTPUT: < sca, ae, pme, ℒthr>

1:

2:

3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:

L ← ∅; sca ← ∅; Yhist← ∅
for r∈R do

l ← get(DB[‘component’], r.attributes)
L ← append(L, l)

add(DB[‘lightpaths’][R.id], L)
for i = 1..params.nrep do

for l∈L do
if l.type == “tx” then

b ← l.PBRS(params.n)
X ← l.generateConstellation(b)
Y ← GMMfitting(X)

else Y ←l.propagate(Y)
Yhist ← Yhist ⋃ Y

for <Yi, Yj>∈ Yhist do
val←computeChi2(Yi,Yj) (eq. (7))
if sca == ∅ or sca.thr<val then

sca.ref ← <Yi, Yj>
sca.thr ← val

ae ← get(DB[‘AE’], R.tx.power)
pme ← get(DB[‘predictor], R.tx.power)
ℒthr ← get(DB[‘GoF’], R.tx.power)

return < sca, ae, pme, ℒthr>

After some initializations, the lightpath model L is built by selecting, for each of the components

in R, the available component model in DB that better fits component’s attributes (lines 1-4 of

Algorithm 8). After saving model L for further purposes (line 5), a number of random

constellation samples are generated, propagated through L (see Figure 47b) and saved in a

temporary data set Yhist (lines 6-13). Yhist is processed in order to build the sca model. To this aim,

the difference between the features of every pair <Yi, Yj> ∈ Yhist is computed by means of a

statistical test based on the chi square test (lines 14-15). The proposed chi2-based statistic (chi2)

is formally defined as:

𝑐ℎ𝑖2(𝑌𝑖 , 𝑌𝑗) = ∑
(𝑌𝑖(𝑘) − 𝑌𝑗(𝑘))

2

𝑚𝑖𝑛(𝑌𝑖(𝑘), 𝑌𝑗(𝑘))
𝑘=1..|𝑌𝑖|

 (7)

In consequence, the sca model includes the pair of reference samples <Yi, Yj> that maximizes

the value of chi2, as well as such maximum chi2 value that will be later used as threshold for

acceptable difference between samples (lines 16-18). Finally, ae and pme models and parameter

ℒthr, are retrieved from the set of trained models and eventually returned jointly with sca (lines

19-22). Although pme can be designed in multiple ways, we consider it as a DNN model that

predicts the lightpath length as a function of features Y.

Lightpath Length Analysis
Once the sandbox manager feeds the Rx agent with updated models, in-operation constellation

analysis can be carried out.

Algorithm 9 details the procedure used to detect mismatch between the received and the

expected constellation in terms of the supervised features Y. Therefore, it requires to process

the monitored constellation X jointly with models sca and pme, and parameter ℒthr. After some

initializations (line 1 in Algorithm 9), the supervised features are computed and the logarithm of

the likelihood is compared against ℒthr to detect whether observed features are unlike to follow

 D4.3 GA Number 101016663

67

a Gaussian distribution (lines 2-4). If so, a new message with the obtained likelihood is added to

the diagnosis report (line 5).

Algorithm 9. [Rx] - Length Analysis

INPUT: X, sca, pme, ℒthr; OUTPUT: Y, diagnosis

1:

2:

3:
4:
5:
6:
7:
8:
9:

10:
11:

diagnosis ← ∅
Y ← GMMfitting(X)
ℒ ← logLikelihood(X, Y)
if ℒ > ℒthr then

diagnosis.add(<‘Inaccurate Features’, ℒ>)
testi←computeChi2(sca.Yi, Y) (eq. (7))
testj←computeChi2(sca.Yj, Y) (eq. (7))
if min(testi, testj) < sca.thr then

diagnosis.add(<‘Unexpected Length, test>)
diagnosis.add(<‘Estimated Length, pme(Y)>)

return Y, diagnosis

The analysis continues by computing the chi2 test between the observed features and the two

reference samples stored in sca. The minimum of both values is compared against the threshold

(lines 6-8), and, in case of threshold violation, an unexpected lightpath length is detected and

pme is used to provide an estimation of the real length of the lightpath, which adds relevant

information to the diagnosis report (lines 9-10). The procedure finishes by returning the

diagnosis report, as well as the supervised feature sample Y, which can be eventually stored for

further analysis (line 11).

Power Anomaly Detection
Finally, Algorithm 10 performs the analysis of the monitored constellation using the ae model.

This analysis computes the relevance (importance) h of the ae model inputs and keeps track of

them in time to detect any strong variation, like drift or shift. To that end, besides the monitored

sample X and ae model, the algorithm receives the set of historical relevance measurements H

of such a lightpath. First of all, forward analysis is performed (lines 1-6 in Algorithm 10).

Specifically, the original sample X is transformed into the latent sample Z using the encoder and

reconstructed into X* using the decoder. Then, the rMSE between original and reconstructed

sample is compared against the maximum error computed during ae training to detect whether

latent features Z are inaccurate. Similarly as for the previous use case, inaccurate features are

diagnosed if reconstruction error is high.

Algorithm 10. [Rx] - Importance analysis

INPUT: X, H, ae; OUTPUT: Z, H, diagnosis

1:

2:

3:
4:
5:
6:
7:
8:
9:

10:
11:

diagnosis ← ∅
Z ← ae.encoder.propagate(X)
X*←ae.decoder.propagate(Z)
ε←rMSE(X,X*)
if ε > ae.εmax then

diagnosis.add(< ‘Inaccurate Features’, ε>)
h←relevanceBackpropagation(ae, X*)
H←update(H,h)
if detectVariation(H) then

diagnosis.add(< ‘Power anomaly’, h>)
return Z, H, diagnosis

Regardless of the result of forward diagnosis, analysis continues by applying relevance

backpropagation techniques, using the ae model backwards (from X* to X) in order to compute

 D4.3 GA Number 101016663

68

the relevance of every input. By averaging the relevance of the inputs of the same constellation

points, the relevance analysis vector h is computed, with one value for each constellation point.

Once the relevance vector h is computed, historical set H is updated (line 8). Note that H consists

in |P| time series with the temporal evolution of the relevance of each constellation point. Then,

a procedure to detect variations in time series can be applied to detect variations such as gradual

drift and instantaneous shift. This variation analysis can either be applied to each of the time

series independently or the aggregation (sum) of time series belonging to a group of

constellation points, e.g., outer or inner constellation points. If, regardless of the type, some

variation is detected, a power anomaly message is generated and added to the report jointly

with the current measured relevance (lines 9-10). Finally, the diagnosis report and the historical

relevance set H are returned, jointly with the latent sample Z (line 11).

5.4 ILLUSTRATIVE NUMERICAL RESULTS
In this section, we first introduce the simulation scenario and constellation data generated for

numerical evaluation purposes. Then, the feature extraction procedure is evaluated and next,

the DNN-based concatenated model for lightpath modelling, as well as the setup algorithm are

validated. Finally, the lightpath analysis use cases are evaluated.

Simulation Scenario and Data Sets
To evaluate the proposed methods for constellation and lightpath analysis, a MATLAB-based

simulator of a coherent WDM system was developed to generate IQ constellations for a

16QAM@64GBd signal under different physical path characteristics. Assuming 100 GHz channel

spacing and full spectrum occupancy, signal samples containing 2,048 symbols and shaped by a

root-raised cosine filter with a 0.06 roll-off-factor are generated at the Tx side. Then, the signal

is propagated through standard single mode fiber spans, characterized by optimal power of -1

dBm, attenuation factor of 0.21 dB/km, dispersion parameter of 16.8 ps/nm/km, and nonlinear

parameter of 1.14 1/W/km. Spans are modeled by solving the nonlinear Schrödinger equation

using the well-known split-step Fourier method, whereas ideal inline optical amplification is

modeled as EDFAs with a noise figure of 4.5 dB, introducing linear noise. Finally, a DSP block is

considered at the Rx able to perform ideal chromatic dispersion compensation and phase

recovery.

Figure 48 shows the two different scenarios configured for constellation data generation. Under

the single link scenario (Figure 48a), a sequence of spans between Tx and Rx without

intermediate ROADMs is configured. The first span has a variable length ranging from 40km to

80km and places an optical attenuator after the Tx to adjust the signal power according to the

length of the first span, whereas the remaining spans have a fixed length of 80km. We

considered up to 25 spans, so 3,000 constellation samples with a total length ranging from 80km

to 2,000km were generated. Moreover, each sample belongs to one of the following

configurations for the first span length and initial attenuation: i) optimal (80 km, 0 dB); ii) sub-

optimal (60 km, -4 dB), iii) degradation (40 km, -8 dB). These different configurations have been

devised to introduce power variations that result in small changes in the optical constellations

without impacting lightpaths’ QoT. In contrast, intermediate ROADMs between Tx and Rx are

considered under the multiple link scenario (Figure 48b). The WSSs inside the ROADMs are based

on commercially available ones and modeled. In this case, four different optical link

configurations in terms of total length and number of spans are considered: 100-km (2x50-km

spans), 240-km (4x60-km spans), 400-km (5x80-km spans), and 560-km (7x80-km spans). By

generating lightpaths with hop length (number of links in the lightpath’s route) in [1, 4] and

combining links with different configurations, 3,000 signals with a total length between 100km

 D4.3 GA Number 101016663

69

and 2,240km were generated. In this work, we use a typical data split of 60%-20%-20% for

training, testing, and validation purposes, respectively.

Figure 48. Single link (a) and multiple link (b) lightpath scenarios.

The network architecture in Figure 43 has been reproduced in a Python-based simulator

implementing its main elements and functional blocks. For model training in the sandbox

domain, we used sklearn and keras as main libraries for training and testing DNN models. The

configuration of each DNN model and the selected data set for training, testing, and validation

is specified in the following subsections.

Feature Extraction Evaluation
Let us first focus on evaluating the supervised feature extraction methodology based on GMM

fitting. For this study, we used the data generated under the single link scenario with the optimal

power configuration. Figure 49 shows the evolution of the supervised features as a function of

the total lightpath length. For the sake of simplicity, only one outer (-3+3i) and one inner (-1-1i)

constellation points are selected. We observe that the average position of constellation points

(Figure 49a), which has been normalized to the expected centroid, slightly varies with length.

Nonetheless, the selected outer constellation point shows some remarkable drift in the Q axis.

Regarding variance terms (Figure 49b), it is clear that they are strongly correlated with length in

the whole range, whereas the covariance term (Figure 49c) has a significant shift for long path

lengths. We observe in the figures that clear and strong patterns between the supervised

features and the length of the lightpath exist, which anticipates good accuracy of the length

analysis procedures based on these supervised features.

In addition to the previous results, Figure 49d shows the likelihood GoF metric ℒ, which stays

above -3.5 for all the considered distances. Then, such value can be selected as ℒthr parameter

for validation of feature extraction procedures. Moreover, the Henze-Zirkler multivariate

normality test was conducted for all the samples belonging to the selected dataset. We

concluded that all 16 constellation points can be accurately modeled as Gaussian distributions

for all the considered distances, since the obtained p-value of the test always exceeded the

commonly accepted significance level of 0.05. To better illustrate the valid fitting of constellation

points as bi-variate Gaussian distributions, Figure 50 zooms in the selected inner and outer

constellation points of two samples belonging to different lightpath lengths (400km and

1600km). The computed Gaussian distribution is plotted together with the samples, showing

different level curves for different variance values. In view of the results, we can validate the

proposed supervised feature extraction procedure for the characterization of constellation

points.

 D4.3 GA Number 101016663

70

Figure 49. Supervised feature extraction performance.

Figure 50. Example of supervised feature extraction for two constellation points after 400km

and 1,600 Km.

Let us now numerically evaluate the performance of the unsupervised feature extraction based

on the AE model, which is part of the forward analysis. To this aim, we initially trained an AE

model with data from the single link scenario and optimal power configurations. Fixing a

symmetric encoder and decoder configuration, each with 4 hidden layers (1024, 256, 128, and

64 ReLU neurons), we trained different AEs for a size of latent space Z (m) ranging from 4 to 64

features. The results in terms of reconstruction error ε for the testing samples are presented in

Figure 51a. For benchmarking purposes, Principal Component Analysis (PCA) was conducted,

where the training data set was used to compute the first m PCs that collect the maximum

information from the original data. Testing data samples were next compressed and

reconstructed with the selected PCs, thus emulating the encoding/decoding AE network

components. Supported by the results, we can conclude that 32 latent features are enough to

reach a negligible (< 2%) reconstruction error. Note that the same number of PCs doubles the

error of that of the AEs.

Figure 51b plots the compression rate achieved as a function of the target reconstruction fidelity

(defined as 1- ε). We observe that the AE clearly outperforms PCA. Note that 99% of

reconstruction fidelity can be achieved with compressed samples, while reducing in 96% the size

of original constellation samples. Such an extremely large compression rate is not achieved by

PCA, which reaches a moderated 60% of compression rate for the same reconstruction fidelity.

Finally, Figure 51c plots the relation between unsupervised features and path length, similarly

as for supervised features. For representation purposes, the 32 latent features have been

 D4.3 GA Number 101016663

71

projected into two dimensions by means of applying PCA to the latent space samples. The graph

shows the position of the samples in the two-dimensional space obtained with PCA, whereas

path length is coded by a color scale. We observe a clear relation between latent features and

path length. However, this relation is not as strong as that of the supervised features, which

validates the latter for path length analysis.

Figure 51. Unsupervised feature extraction performance.

Lightpath Modelling

For lightpath modelling, we selected the number of constellation points to the minimum

providing just enough information to capture the overall constellation characteristics; for

16QAM, specifically, two outer (-3+3i, 1-3i) and two inner (1+1i and -1-1i) constellation points

were selected. In addition, we considered that both DNN models for the optical fiber links and

for ROADMs follow the same architecture characterized by: i) 20 input neurons (5 features per

constellation point); ii) two hidden layers, each one with 12 neurons and tanh activation

function; and iii) one output layer with 24 neurons to estimate the output features. These

component models were trained during 5,000 epochs and tested with data from the multiple

link data set.

The overall absolute and relative errors for all link configurations, lightpath lengths, and selected

constellation points are shown in Figure 52, where average and maximum errors of features µ

(Figure 52a) and σ (Figure 52b) are plotted. We observe negligible µ prediction errors (max error

< 2%) independently of the link length. In contrast, σ max error is around 30% for low σ values

although decreases when path length increases, becoming under 15%, which is, in general, a

good enough performance to validate the models. For illustrative purposes, Figure 52c plots the

Gaussian distributions for the selected constellation points, obtained with the concatenation

model and simulator for a 1,600-km lightpath (4 optical links of 400km). For the sake of clarity,

we reduced the number of level curves and removed colors. It is worth noting that strong

similarities between both cases are evident.

 D4.3 GA Number 101016663

72

The reconstruction of the features of the non-selected constellation points can be carried out

by means of the proposed linear model with a reconstruction accuracy of 97%, which indicates

the proper choice of the selected points.

Figure 52. Lightpath modelling performance.

Length Analysis Use Case
Let us now analyze the performance of Algorithm 9. Specifically, we focus on the performance

of models sca and pme. To this aim, the features of the reference samples stored in sca model

(model-based) are compared to those extracted from the validation samples of the multiple link

data set (simulator-based). The comparison between model-based and simulator-based

features was performed using the proposed chi2 test. We first compared the case when the

simulation and model were configured with the same lightpath length and link configuration.

For all the combinations, the maximum observed threshold for the chi2 test never exceeded 0.5

in logarithm scale. Therefore, we use such a threshold for unexpected length detection.

Next, we compared different configurations of 4-link hop lightpaths to check whether the value

of the chi2 test serves as a good indicator of misleading length. Figure 53a reports the results,

where we observe that the selected threshold of 0.5 allows us to clearly distinguish all cases

when simulation and model were configured differently (orange) from cases with the same

length (green). Additionally, the impact of considering just slightly different scenarios in the

simulation and concatenation model was tested. Specifically, a 4-link hop lightpath with 240-km

links was configured in the simulation, whereas the model was configured with the same

number of hops and link configuration except for only one of the hops, where a 400-km link was

selected. The four different positions in the path for the 400-km link were evaluated; Figure 53b

shows that all cases stayed above the 0.5 threshold, which implies that the small difference was

correctly detected. Note that localization of the longer link can be done by performing the test

in the intermediate links. Finally, Figure 53c shows the result of applying the intermediate

analysis when the 400 km is in the third fiber span. We observe that the link is localized as the

chi2 test value exceeds the selected threshold when evaluating the features right after the third

fiber span.

 D4.3 GA Number 101016663

73

The performance of pme was eventually evaluated. The structure of pme DNN was as follows: i)

20 input neurons (5 features per selected constellation point); ii) two hidden layers, each one

with 12 neurons and tanh activation function; and iii) one output layer with one single neuron

that predicts lightpath length. The pme DNN model was trained with the single link data set and

during 5000 epochs. Figure 54 shows the average and maximum relative estimation error. Here,

we observe average error below 5% regardless of lightpath length and maximum error under

10% for lightpaths longer than 100km. These results validate pme as accurate real lightpath

length estimation.

Figure 53. sca model performance.

Figure 54. pme model performance.

Relevance Analysis
Finally, we conducted a numerical study to evaluate the models involved in Algorithm 10.

Specifically, we focused on illustrating how the ae model can discern between different power

scenarios and on showing how the input relevance varies with power degradation.

For power scenario discrimination, let us first inspect the examples of constellation point -3+3i

for each scenario reproduced in Figure 55. We observe clear differences on the Gaussian

features Y among power scenarios. Figure 56 shows each of the samples projected on the

reduced two-dimensional PCA space from the Y space. We realize that the observed differences

do not support an easy discrimination since the three classes are not separable. Nonetheless, as

part of the forward analysis, the same projection can be performed using latent space samples

Z computed with the ae model trained with all power configurations. This AE produces a

reconstruction error under 2%, similar to the one presented above for unsupervised feature

extraction. Figure 57 presents the obtained results where the three power scenarios are clearly

distinguishable. In consequence, we conclude that the proposed AE-based model for

constellation analysis allows for accurate discrimination of power configurations producing

small changes in the received constellation.

 D4.3 GA Number 101016663

74

Figure 55. Constellation point -3+3i examples for power scenarios.

Figure 56. Power scenario discrimination with Y.

Figure 57. Power scenario discrimination with Z.

Regarding relevance analysis, let us compare two different ways to aggregate relevance of

constellation points: i) quadrant-based, e.g., right-upper and left-bottom quadrants (Figure 58a);

and ii) energy-wise, i.e., inner and outer constellation points (Figure 58b). In view of the figures,

we conclude that energy-wise aggregation gives more information, since the relevance of inner

constellation points clearly reduces when power degrades. Hence, relevance analysis can be

potentially used to early power anomaly detection, which could eventually lead to hard failures.

Figure 58. Relevance vs power scenarios.

Table 14. Input relevance variation due to power degradation.

I/Q -3 -1 1 3

3 7% -2% -4% -9%

1 -4% -17% -12% 13%

-1 -3% -9% 14% -4%

-3 10% 5% -3% 22%

 D4.3 GA Number 101016663

75

The relative relevance variation per constellation point when moving from optimal to

suboptimal scenario is detailed in Table 14. Increase/decrease of relevance in more than 5%

above/below the reference optimal configuration is highlighted in green/red. In line with the

conclusions from Figure 58, we can easily verify that outer constellation points (mainly those in

the corners) become more relevant, since more NLI and LI noise is expected under sub-optimal

power configuration, which makes the shape of outer points more elliptical than those with

lower energy. Hence, the importance of the symbols on these outer constellation points in the

latent space is higher, since the overall shape of the constellation is more complex.

5.5 CONCLUDING REMARKS
A comprehensive DL-based IQ constellations analysis for in-operation lightpath modelling and

power analysis has been proposed. DL models propagating IQ constellations features were

trained in a sandbox domain for modelling optical components, such as optical links, OAs, and

ROADMs. Then, a target lightpath can be modelled by concatenating specific DL models, to

reproduce the propagation of IQ constellations from Tx to Rx. Two methods for feature

extraction were proposed, based on GMM (supervised) and on AE (unsupervised). By using

those models at the node agent, real-time analysis of the received optical signal can be carried

out. In addition, constellation samples were compressed into a reduced set of latent space

features, which remarkably reduces (more than 95%) the amount of data that needs to be sent

to the centralized controller.

Two illustrative use cases of lightpath performance analysis were investigated. First, lightpath

length analysis showed noticeable low error for lightpaths longer than 100km, clearly detecting

slight differences in lightpath configurations. Next, different power profiles were studied, where

extracted latent features from AE models showed accurate discrimination in terms of Tx power

configurations. Finally, a relevance constellation analysis for the AE input parameters was

carried out, providing clear understanding about which constellation points have larger

relevance, which might be very useful for different analysis proposes.

 D4.3 GA Number 101016663

76

6 NEAR-REAL-TIME OPERATION

Autonomous network operation evolves from SDN and promises to reduce operational

expenditures by implementing closed loops based on data analytics. Such control loops can be

put into practice based on policies that specify the action to be taken under some circumstance

(policy-based management), e.g., allocate the capacity of a packet flow so that the ratio traffic

volume over capacity is under 80%. In packet flows, this ratio is related to the average delay that

the packets in the flow will experience because of queuing, and thus to the Service Level

Agreement (SLA) in the case that the packet flow is related to some customer connection.

Although such policies can be modified, they are purely reactive. Under high traffic variations,

they might entail either poor QoS (e.g., high delay or even traffic loss) and SLA breaches or poor

resource utilization, which in both cases represent large costs for network operators. Note that

policy-based management does not define the desired performance and thus, agents

implementing those policies are unable to learn the best actions to be taken. Another approach

for network automation is Intent-Based Networking (IBN), which allows the definition of

operational objectives that a network entity, e.g., a traffic flow, has to meet without specifying

how to meet them. IBN implements and enforces those objectives, often with the help of ML.

In this section, we present solutions for the near-real-time control of network resources, thus

relieving the SDN controller from such operations.

6.1 LOW COMPLEXITY OPTICAL POWER OPTIMIZATION
With the deployment of complete telemetry solutions, time series of measurements performed

at network elements, such as BER, power, etc., are now customarily transmitted to third entities

and jointly processed. Besides the obvious usage for troubleshooting, a lot of effort has been

focused on leveraging this data to refine the knowledge of the network physical parameters,

and thus to help construct a DT, i.e., a timestamped digital replica of the optical network.

Operators can leverage the DT to perform several different optimization operations and extract

the highest possible value from their network at a given time. In recent work [An24], we focus

on the problem of using monitoring data to a) refine the knowledge, and b) optimize in a closed

loop, the optical power launched in the fiber, in optical transmission impaired by polarization

dependent loss (PDL) [Lo21]. The main idea is that the BER of established lightpaths (or the

equivalent SNR assuming GN) is a random variable due to the joint effect of PDL and random

phase rotations along the line, with different regimes (i.e., linear or nonlinear) resulting in

different shapes of the SNR probability density function (PDF).

In [An24] we extended the work of [Lo21] by numerically exploring ML methods and we

optimized the input features of the SNR PDFs which are fed to the ML algorithm. A result of this

investigation was that 70% reduction of the input feature vector can be achieved while reaching

an accuracy above 98% in all cases, while we also validated the numerically trained algorithms

on limited experimental samples, resulting in a fair classification accuracy of the transmission

regime.

 D4.3 GA Number 101016663

77

Figure 59: Setup used to collect the SNR samples. The optical link consists of a repetition of an

SSMF+EDFA span, followed by either a “regular” or “random” location of the ROADM (two WSS

cascade).

In Figure 59 we show the system setup, where the loop between the Rx and Tx is for now

switched off. We consider that WSSs in ROADMs add PDL, drawn from different distributions.

Two configurations were investigated, the “regular” and the “random”, as shown by the switch

in Figure 59. In the regular configuration a ROADM was placed after three consecutive spans

with PDL values of each element randomly selected from a uniform distribution ranging between

0.1 and 1 dB. In the “random” configuration ROADMs were inserted randomly after each span

with a 30% likelihood, with PDL elements drawn from a chi-square (χ²) distribution with three

degrees of freedom, with a mean of 0.2 dB and a probability of exceeding 0.8 dB set at 1.05%.

We considered 21 Gaussian-modulated channels transmitted with symbol rates R=49 and

channel spacings W=50GHz or R=69 Gbaud and W=75GHz. The transmitted power varied in the

range [-10,10] dBm with steps of 0.5 dB, while the system length was 12, 15, 18 or 21 spans. One

million SNR samples were collected for each simulation using the model of [Se20] and then PDFs

were a) normalized to takes values in the range [plim,1] and b) downsampled to a number of bins

equal to N. Consequently, four ML algorithms have been tested: a) k nearest neighbors (KNN),

b) random forest (RF), c) support vector machine (SVN) and d) shallow artificial NN (details found

in [An24]).

Figure 60: (a) RF cross-validation accuracy as a function of probability limit, 𝑝𝑙𝑖𝑚 for variable

number of bins N. (b) Cross-validation accuracy violin plots for RF, KNN, SVM and ANN.

In Figure 60a, we plot the cross-validation accuracy for the RF algorithm as a function of plim and

a variable number of number of bins N, while qualitatively similar results are obtained for the

other three algorithms (not shown here). We note that for plim<10-1, the cross-validation

accuracy is almost constant, while in a similar manner, the benefits of increasing the number of

bins N above 70, does not bring considerable benefits. Using the optimal parameters plim and N

Random

or RegularSSMF

100 km

ROADM

P
D

L

P
D

L

WSS outWSS in

S
N

R

Monitoring

time

action

EDFA

NF =5 dB

WSS in

PDL

TX RX

WSS out

PDL

 D4.3 GA Number 101016663

78

for all algorithms, in Figure 60b we show the cross-validation accuracy violin plots. We note that

all algorithms yield similar accuracies, with RF being slightly more accurate than the others.

Finally, we measured the testing time in our server to be 0.369±0.018 sec for KNN, 0.062±0.0002

seconds for RF, 0.0919±0.0002 seconds for SVM and 0.0012±0.00001 seconds for ANN,

suggesting that RF achieves a fair tradeoff between accuracy and runtime complexity.

In [AnJOCN24] we consider again the system of Figure 59, but this time with the closed loop

between Rx and Tx switched on, to achieve optimization of the transmitted power. To do this

we propose a low-complexity method based on 2 RF classifiers, one “fine” classifier A and a

“coarse” classifier B. For A and B, power is classified in three regimes, linear regime (LIN), close

to the optimal power NLT (MID) and nonlinear regime (NLIN), with the only difference that the

MID regime is narrower for classifier A compared to classifier B, as detailed in Figure 61a.

Furthermore, we investigate the usage of statistical moments of the SNR samples as input

features of the ML algorithms, namely the average μ, the variance σ2, the skewness γ and the

kurtosis κ. For comparison, we also introduce a naive power optimization method which can be

briefly described as follows: 1) adjust power at Tx and establish which adjustment direction (i.e.,

increasing or decreasing power) results in an average SNR E[SNR] increase at Rx, 2) continue

adjusting power at Tx with small steps and measuring E[SNR] at Rx until E[SNR] decreases, 3) go

one step back and stop power adjustment.

Figure 61: a) Classifiers power ranges and corresponding corrections, with 𝑐, 𝑃 and 𝑝 constants

and 𝑟 = ±1 b) Cross-validation ML performance for Classifiers A and B using combinations of

SNR moments (markers) or normalized PDF (lines). c) ML vs. naive optimization in terms SNR

improvement (upper) and required iterations (lower).

In Figure 61b, we show the macro F1 cross-validation performance of classifiers A and B as a

function of different combinations of moments (markers), or using the entire normalized PDF

(lines), as in [An24]. We note that optimal results arise when using all four input features [μ, σ2,

γ, κ] but the F1 score is only marginally higher compared to using only [μ, σ2, γ] or [μ, γ].

Therefore, skewness and average SNR are the most impactful moments, while, using moments

generally outperforms using the entire PDF. Finally, in Figure 61c we show the optimization

results for the two strategies. In the top chart, SNR improvements ΔSNR are plotted against the

difference between initial power Pin and NLT, showing that SNR improvements are quite similar,

with the naïve strategy slightly outperforming the ML strategy in the ASE-dominated range. In

the bottom histogram the number of iterations is plotted against power, illustrating that the

ML-based strategy offers a significant reduction of the number of iterations, both near and far

from the NLT. Interpreting this result, we suggest that, near NLT, a minimal number of iterations

is needed thanks to ML’s ability to efficiently identify the optimal range, while far from NLT,

fewer iterations are required due to a faster power correction achieved by larger steps.

c)b)
a)

C
la

ss
if

ie
rs

:

B

coarse

A

fine

 D4.3 GA Number 101016663

79

6.2 HASH-BASED TECHNIQUES FOR THE DETECTION OF LARGE FLOWS IN P4 SCENARIOS
Packet-optical nodes employing open operating systems like SONiC featuring high-speed long-

reach coherent optical pluggables (e.g., 400G ZR+) have appeared in the optical arena to

challenge classical transponder-based systems.

In addition to having high-speed pluggables, such packet-optical boxes may include

programmable ASICs leveraging P4 technology [Bos14]. P4 has demonstrated its potential in a

wide range of scenarios, including advanced monitoring and telemetry, latency-aware

scheduling and forwarding, 5G function acceleration, cyber-security, in-network AI, etc. A broad

summary of these use cases can be found in [Cug22, Cug23].

However, monitoring packet streams at line rates equal or above 100 Gb/s is extremely

challenging, especially given the fact that flow size typically follows a Pareto distribution. This

means that a few minor flows (the elephants) contribute with the majority of packets and traffic

in general and vice versa, most of the flows (the mice) contain only a few packets [Fan99,

Mol11].

Indeed, the authors in [Jur21] examine a large number of flows in a university campus in Poland,

and show that almost two thirds of flows contain only 1 or 2 packets. This means that sampling

packets randomly will very likely not observe a great portion of the packet flows, thus very

inaccurate to identify flow cardinality or estimate heavy hitters. Thus, sampling is not possible

and all packets must be inspected to identify all flows, and only hash-based techniques can be

used since they are compact in memory and processing requirements.

There exist different probabilistic data structures based on hashing techniques (i.e., filters and

sketches mainly) that provide accurate summaries (not exact) efficiently in terms of time and

memory requirements, which can be used to query streams of packets. Some examples of such

techniques include Bloom Filters, HyperLogLog and Count-Min Sketch and allow:

• To test if a packet belongs to a group of flows or not, for instance, a black list (using
Bloom Filters).

• To obtain cardinality of flows, i.e., how many different flows are traversing a given
port (using HyperLogLog algorithm).

• To identify the top-K heaviest flows/heaters, i.e., top 10 heavy-hitters or top-20, etc
(using Count-Min Sketch or CMS).

These summaries allow to perform specific operations on all flows at the data plane (in a

programmable data plane like P4) with reduced memory requirements. In fact, the authors in

[Nam22] have implemented many of these hash-based algorithms in P4 and made the code

open-source (SketchLib) for further experimentation by the research community. The next

sections briefly review the design guidelines for P4 programmable dataplanes willing to include

CMS in its pipeline to perform heavy-hitter detection and processing. In addition, the use cases

and applications of CMS in the context of IPoWDM optical networks with P4-based packet-

optical nodes are also studied, along with a real implementation on an Intel-based P4 Tofino

scenario.

6.2.1 Packet and flow statistics in aggregated IP nodes

The authors in [Jur21] released detailed statistics for the research community regarding packet

traces collected at a university campus in Poland in year 2021. Some of the results observed

include: (1) average packet size of 870.6 Bytes, (2) Average flow size 68410 Bytes (78.5 packets),

(3) Flows with only 1 packet: 47.8%, and (4) Flows with only 1 or 2 packets: 65%.

Another important observation is that flow size follows a Pareto-like distribution, where the
majority of flows contain very few packets, while very few heavy hitter flows comprise most of

 D4.3 GA Number 101016663

80

the traffic (in terms of packets), confirming past observations in different scenarios [Fan99,
Mol11]. Following these numbers, Table 15 summarizes both flow and packet rates per switch
port for a packet-optical node whose ports operate at line rates of 100 Gb/s and 400 Gb/s at
different loads.

Table 15. Flow and packet rate per port at 100 and 400 Gb/s (for different loads)

100 Gb/s

Load 10% 40% 70%

Flow rate 18.25 K flow/s 73 K flow/s 127.75 K flow/s

Packet rate 1.54 M packet/s 6.17 M packet/s 10.8 M packet/s

400 Gb/s

Load 10% 40% 70%

Flow rate 73 K flow/s 292 K flow/s 511 K flow/s

Packet rate 6.16 M packet/s 24.64 M packet/s 43.12 M packet/

For instance, taking a 1-sec time window, a 100G port will experience the following traversed

traffic:

• 73K different Flows, most of them with just 1 or 2 packets

• 6.17M total packets on average.

6.2.2 Count-Min Sketches for traffic flows detection

The CMS is a data-structure that allows to store the frequencies of each flowID in a compact

manner [Cor05]. It is very similar to having multiple Counting Bloom Filters. The challenge is

again to store the frequencies of flows (especially the heavy hitters) where most of them are

unique.

Figure 62. Example of a CMS structure, d=3 hash functions and W columns

To do this, the CMS comprises a matrix with d rows (one per hash function) and w columns, as

shown in Figure 62. When an element arrives (a packet in this scenario), the CMS computes all

d hash functions (one per row) and increases by one each position in the appropriate column.

For instance, in the example of Figure 62 with d=3 rows and w=20 columns, let us assume that

the hashing of packet e gives the following results: h1(e)=10, h2(e)=5 and h3(e)=14. These values

imply that the positions [1,10], [2,5] and [3,14] in the CMS matrix should be increased by one,

as shown in the figure. Thus, every single packet traversing the port requires computing d

different hash functions of it and increasing the corresponding positions [d,hd(e)] of the CMS

sketch.

After all elements (packets) are introduced, the CMS can be queried to get an approximate of

frequency for a particular element. Consider we want to estimate the popularity of element y.

To do this, the procedure is to hash element y and take the minimum value. Consider for

 D4.3 GA Number 101016663

81

example, that the CMS array returns the following results: h1(y) = 6, h2(y) = 7 and h3(y) = 2, and

looking at positions [1,6], [2,7] and [3,2] of the CMS matrix, we observe values 5, 7, and 5 again.

The number of packets arrived so far with flowID = y would then be min(5,7,5) = 5 packets. This

is an estimate and some errors may have occurred due to hash collisions (as it is probably the

second counter [2,7] since the other two counters output 5 packets). For this reason, it is

necessary to accurately dimension the CMS structure for a given expected number of elements,

that is, sufficient rows and columns.

In general, CMS is an (e,d) probabilistic data structure, where the result returned is bounded to

at most 𝜀‖𝐶𝑜𝑢𝑛𝑡‖ with probability 1 − 𝛿, while both e and d can be obtained from the CMS

design parameters d and w as it follows:

𝑑 = ⌈𝑙𝑛(1/𝛿)⌉ and 𝑤 = ⌈
𝑒

𝜀
⌉ (8)

where e is the estimation error.

Table 16 shows a number of typical configurations of CMS (i.e. d and w) and associated accuracy

and error.

Table 16.CMS dimensioning examples

Hash Acc 256 512 1024 2048 4096 8192

3 hash 95% 1.1% 0.6% 0.27% 0.14% 0.068% 0.034%

5 hash 99.32% 1.1% 0.6% 0.27% 0.14% 0.068% 0.034%

7 hash 99.91% 1.1% 0.6% 0.27% 0.14% 0.068% 0.034%

9 hash 99.988% 1.1% 0.6% 0.27% 0.14% 0.068% 0.034%

11 hash 99.998% 1.1% 0.6% 0.27% 0.14% 0.068% 0.034%

The way to read Table 16 is as follows: Consider we are expecting 70,000 flow IDs in a time

window of 1 second (as an example of 100 Gb/s port), where the largest data flow is expected

to contribute with 2,000 packets. Then, with probability 0.9991, we are interested in error

estimated below 1%. Hence we need:

𝑑 = ⌈ln (
1

1
− 0.9991)⌉ = 7 ℎ𝑎𝑠ℎ

 𝑤 = ⌈
2.71

0.01
⌉ = 272 𝑐𝑜𝑙𝑢𝑚𝑛𝑠

(9)

Looking at the table, we decide to use a CMS with 7 hash functions and 512 columns, where

each column can allocate 8 bits of counting. The total amount of memory consumed is

approximately 7 x 512 x 8 =28,672bit, i.e., 28Kbit.

6.2.3 Scenario and experiments

Network setting and CMS dimensioning

Let us consider a monitoring time window of 0.1 seconds, where a blank CMS is zeroed at time

t0=0 and is populated with the number of packet arrivals until tw=0.1s. Following Table 15 (100

Gb/s, 40% load), we should expect around 7,000 different flows whose size follows a zipf

distribution. In this regard, we have simulated a packet trace with N=7,000 different flow IDs

and packet sizes following a zipf distribution with scale a=1.1 (following the examples of [Her19].

This means that the k-th flow has a frequency fk following:

 D4.3 GA Number 101016663

82

𝑓𝑘 =

1
𝑘𝛼

∑
1
𝑛𝛼

𝑁
𝑛=1

, 𝑘 = 1, . . . , 𝑁 (10)

Figure 63. Flow-size distribution: Zipf-like CDF

As shown in Figure 63, the largest flow contributes with 15% of the total traffic while the top-20

heaviest hitters comprise 49% of the total traffic (almost the same as the other 6,980 flows). In

this scenario, identifying the top-20 flows allows operators to take decisions regarding their

treatment, i.e., using different optical bands or alternative routes for load balancing and QoS

guarantees.

Figure 64. CMS accuracy at estimating top-20 heavy-hitter flows for different configurations of

CMS sketch: (left) d = {3,5,7} hashes and W=64 columns and (right) d = {3,5,7} and W=256

columns

Figure 64 further shows the estimated flow size (in no. of packets) for the top-20 heaviest hitters

for different CMS configurations, i.e. values of d = {3,5,7} hashes and w={64,256} columns.

6.2.4 Experimental validation

The CMS-based solution has been validated using a network switch, equipped with P4 ASIC,

designed for data center operations and potentially suitable for IPoWDM implementations (as

shown in Figure 65. The traffic flows have been generated using a Spirent N4U. The P4

 D4.3 GA Number 101016663

83

implementation uses five hash functions on the IP source address, each one producing a result

between 0 and 4,096 bit (=212), while the total CMS occupies one register of size 65,536 bit.

In a first experiment, with the aim of collecting baseline performance, the traffic is sent from

one source to one destination host, at a maximum rate of 9.85 Gb/s over a 10G port with fixed

packet size of 512 bytes. The experienced latency to traverse the switch (including hashing and

CMS processing) is 0.95 ms. Then, traffic is generated by 5 different sub-networks each one

comprising 256 hosts (i.e 1,280 IP source addresses) that send traffic to another destination sub-

network comprising 256 hosts. The average latency to traverse the switch interconnecting both

source and destination subnetworks is again 0.95 ms. This values slightly increases to 1.35 ms

for packet size values of 1,024 bytes. Thus, following the implementation of the CMS in a real P4

ASIC switch, we observe that every single packet must traverse all the stages in the pipeline of

the P4 implementation, resulting in a total latency that varies between 0.95 ms and 1.35 ms of

processing time.

Figure 65. Experimental setup in lab

6.3 AUTONOMOUS CAPACITY OPERATION
With the deployment of network slicing and the support to time-sensitive applications, the flow

capacity autonomous operation (hereafter referred to as CRUX) focuses on answering a major

problem that network operators are facing nowadays: how to allocate the right capacity to every

traffic flow, so as to provide the desired QoS (e.g., by preventing traffic loss and ensuring a given

maximum average delay), while minimizing overprovisioning (i.e., capacity–traffic). Although

many ML techniques could be potentially applied for the autonomous capacity operation of

traffic flows, in this section, we rely on RL. Several works have proposed the application of RL

algorithms for autonomous network operation, e.g., RL-based algorithms running in the SDN

controller can be used for dynamic lightpath provisioning or for autonomous bandwidth

allocation in the context of multilayer optical networks.

One of the key issues in the previous works is the time needed to learn optimal policies, as

exploration entails low-reward decision making (i.e., far from optimal operation). In view of this,

 D4.3 GA Number 101016663

84

the performance of RL methods is typically evaluated after some training phase, i.e., when

reward achieves a stationary behavior. However, a subject that is poorly or not even considered

so far is when RL algorithms need to operate before they are properly trained. Note that this

happens in our case, as the actual characteristics of the traffic flow are unknown until it is

provisioned. Moreover, it is not realistic to assume, in general, the same conditions during

training and operation phases, due to mid/long-term traffic evolution, which makes it difficult

to reproduce highly accurate operation conditions during training. To solve these issues, a

general learning lifecycle can be used that included both offline training (e.g., in a sandbox

domain) and online learning, in the context of supervised ML, with the objective to accelerate

autonomous operation by deploying accurate models that are firstly trained offline and fine-

tuned while in operation, thus adapting pre-trained models to actual in-field operation

conditions.

In this section, we apply the main lessons learnt from the previous works to IBN agents based

on RL. We assume that a packet flow (alternatively, referred as traffic flow or simply flow)

conveying traffic with unknown characteristics is established and the allocated capacity needs

to be set to ensure the required QoS (from the set-up time), while minimizing resource

utilization. To this end, a policy-based management is used at the set-up time to start operating

the capacity of the flow; meanwhile, traffic measurements are collected to characterize the

traffic. Note that policy-based operation can be highly reliable, as it is based on specific rules

that can be defined and understood by human operators. However, such an operation usually

obtains poor resource utilization. Therefore, it would be useful to substitute policy-based

operation by an RL model as soon as possible. To that end, pre-trained generally applicable

models for the partly observed traffic characteristics are loaded and the RL algorithm starts

operating. A per-flow algorithm supervises the performance of the RL algorithm and tunes

model parameters to ensure the required QoS. Once enough traffic measurements are available,

offline training is carried out in a sandbox domain to produce a specific model well-suited for

that particular traffic flow, which then substitutes the generic one. Since the traffic

characteristics can change over time, analysis must be continuously performed to detect them

and change the operating model when needed. By iterating that cycle, the proposed RL agent

will be able to adapt to traffic changes that would otherwise degrade performance.

6.3.1 The Flow Capacity Autonomous Operation (CRUX) Problem

Flow Capacity Autonomous Operation
Let us start by analyzing the result of the autonomous capacity operation of a traffic flow. A flow

manager might collect monitoring data from the network and expose some interface, so an RL

algorithm can take action. For illustrative purposes, Figure 66 shows a typical RL framework,

where the learning agent is separated into two different blocks, the learner and the agent.

Let us assume that the monitoring data include the byte count since the last monitoring sample

(amount of traffic) and the actual capacity allocated to the flow. The actions to be taken are

related to the actual capacity allocated to the flow, which can be increased or decreased as

needed with some granularity to meet the required QoS. For instance, a customer connection

can manage the capacity of the flow with granularity 1 Gb/s by configuring some packet node,

whereas in a virtual link supported by the optical layer, the capacity can be increased/decreased

by establishing or tearing down parallel lightpaths, each with a capacity of 100 s Gb/s. It seems

clear that the time to change the capacity is also different, ranging from seconds to minutes.

The RL algorithm should then decide the capacity to be allocated to the flow to absorb variation

in the traffic from one monitoring sample to the next, plus the time to increase the allocated

capacity, with the objective to avoid any traffic loss and ensure some additional QoS metric.

 D4.3 GA Number 101016663

85

Then, the traffic variation becomes a major feature for a flow, together with the traffic pattern,

i.e., the evolution of the mean traffic with time.

This approach can provide excellent performance once the policies that avoid traffic losses meet

the desired QoS, and minimize overprovisioning are learned; however, online learning of such

policies requires time. In addition, there are several issues that can impact the aforementioned

online learning performance, e.g., (1) changes in traffic variability might produce loss before new

policies are learned; (2) smooth model fine tuning could not be enough to mitigate persistent

errors in taking some specific actions; and (3) online learning tends to forget valuable learning

in the long run, thus reducing the model’s accuracy.

Figure 66. Flow capacity autonomous operation. RL framework with learner, agent, and
environment.

Figure 67a represents a possible evolution of the traffic variation (the traffic pattern is omitted

here for simplicity) and the obtained performance—overprovisioning, traffic loss, and some

other QoS metric. The path supporting the flow is established at time t0 and the desired QoS is

specified, so the RL algorithm needs time to learn the traffic variation (and the traffic pattern);

meanwhile (until ta in Figure 67a), poor performance, including traffic loss, can be expected.

Once a good model is obtained, it is expected that an RL algorithm can provide the target

performance. However, a steep change in the variation of the traffic (times t1 to t2) can impact

the performance until the new variation is learned. Nonetheless, it might happen that the

performance does not converge to the desire level even after learning the new traffic variation.

It seems clear that the above behavior is unacceptable for network operators, as it would

provide poor performance and might incur penalties due to SLA breaches. Specifically, it seems

of paramount importance to start the operation with already trained models. To that end, an

initial model can be trained offline using a network simulator in a sandbox domain. Once in

operation, the model will be improved by the online learner. However, there are traffic

characteristics, e.g., traffic pattern, that are observed after a long period of time, e.g., several

days. Therefore, some alternatives are needed to operate the flow during that initial time.

Our solutions go beyond training offline and propose implementing offline–online learning

cycles to deal with large changes in traffic flow, i.e., to provide guaranteed performance during

the whole lifetime of the traffic flow (Figure 67b). Specifically, (i) a policy-based management

State function Reward function

Action

Reward

State

Models

Buffer
Online Learner

Action
Model

Updates

Environment

Agent

Learner

Flow

Monitoring Capacity

Flow Manager

Required CapacityTraffic,
Capacity

RL-based Operation

 D4.3 GA Number 101016663

86

implemented as a self-tuned threshold-based algorithm is in charge of managing the flow

capacity during the time immediately after the path is set up (Phase I: time interval [t0, ta’],

where ta’-t0 should be short, e.g., 1 h). That algorithm tunes a threshold for the flow capacity

and accurately determines the traffic variation. This approach enables dynamic flow capacity

allocation by fixing the right values for the threshold that minimize overprovisioning. However,

avoiding traffic loss and guaranteeing that the required QoS is met is not a straightforward task,

as it depends on the variance in the traffic flow—defined as the difference between maximum

and minimum amount of traffic during some period. Therefore, during this period, the threshold

is set conservatively to avoid underprovisioning (i.e., traffic exceeds capacity, and some traffic is

loss) at the expense of large overprovisioning. (ii) Once the variation of the traffic has been

determined, a pre-trained generic model can be used for flow operation (Phase II: time interval

[ta’, tb’]). The model is general as it has been pre-trained assuming a given traffic pattern, e.g.,

sinusoidal with daily periodicity, but supporting the measured traffic variation. Once in

operation, the pre-trained model starts to fine tune with the observed samples. (iii) Once

enough measurements are available to determine the characteristics of the flow, including the

traffic pattern, a specific model can be trained in a sandbox domain by using a simulator set to

operate at time tb’ (Phase III). That model should improve the performance or be easier to

operate than the pre-trained one. (iv) Assuming that the traffic pattern does not change, any

change in the traffic variation that cannot be absorbed by the current model can trigger

returning to Phase II for more intensive parameter tuning for the new traffic variation, while a

new specific model is trained and is set to operate at time tc’ (Phase II—Phase III cycle).

Figure 67. Operation lifecycle. (a) Online learning RL operation. (b) Offline training with online

fine tuning RL operation.

2.2. Proposed Architecture
This work extends the basic RL-based flow capacity operation (Figure 66) and proposes a scheme

based on (Figure 68): (i) analyzing the traffic to obtain meaningful traffic characteristics; (ii)

making decisions regarding the allocated capacity when no model is in operation (Phase I); (iii)

selecting pre-trained models that fit with the observed traffic characteristics; (iv) training new

models in a sandbox domain (offline learning), where real traffic measurements are used to

generate traffic in a simulation environment and the QoS can be realistically estimated; a replica

of the RL algorithm in operation is used here for training new models; and (v) once accurate

models are obtained, they are used for flow operation and will be progressively fine-tuned

online. As in Figure 66, a Flow Manager collects monitoring data from the forwarding plane and

enforces flow capacity.

timet0 t1

Traffic variation

t2ta
Path

Set-up

Q
o

S
Tr

af
fi

c
Lo

ss

time

time

O
ve

rp
ro

vi
si

o
n

in
g

Traffic
Change

(a)

On-line
Learning

Path
Set-up

Pre-trained
model

Off-line-trained
model

t0 ta' tb’

Traffic Variation
Detection

Off-line-trained
model

tc'

Traffic variation

Traffic Variation
Detection

time

Q
o

S
Tr

af
fi

c
Lo

ss

time

t1 t2

(b)

Phase I

Self-tuned
threshold

Traffic
Change

Phase II Phase III Phase II Phase III

On-line
Learning

O
ve

rp
ro

vi
si

o
n

in
g

time

time

 D4.3 GA Number 101016663

87

The models include some parameters that need to be tuned as a function of the traffic, to

provide the desired performance while meeting the required QoS. Such parameter tuning can

be carried out during offline learning, as well as during online operation to deal with small traffic

changes. Based on the analysis of the traffic and the reward, the Analyzer block decides when

to tune parameters and when to update the model with an offline learned one (labeled Set() in

Figure 68) to meet the given QoS. Note that both parameter tuning and the offline–online cycle

can be completed several times during the operation to improve the learned models, which will

also enable adaptability to changes.

Figure 68. Extended architecture for flow capacity autonomous operation w/ offline learning.

The next section details the RL approaches used to solve the autonomous flow capacity

management problem, CRUX.

6.3.2 CRUX Problem Definition and RL Methodology

This section formally defines the CRUX problem, and introduces the main parameters and

variables used hereafter. Next, it introduces the methodology to solve the problem using RL,

and finally defines the different RL approaches under study. The used notation is summarized in

Table 17, where parameters and variables are defined.

Table 17. Notation - Autonomous Capacity Operation.

Capacity and QoS Params for the Flow

zmax Maximum capacity (Gb/s)
dmax Target maximum delay (s)

l* Optimal load (unleashing dmax) ∊ [0, 100]%
qa QoS Assurance (%)

Traffic and Capacity

xmax(t) Maximum traffic at time t (Gb/s)
xvar(t) Traffic variation at time t (Gb/s)
z(t) Capacity allocated at time t (Gb/s)
o(t) Capacity slack/surplus at time t (Gb/s)
y(t) Overprovisioning margin (Gb/s)
ρ Traffic variance multiplier
b Granularity of capacity allocation (Gb/s)

w(t) Traffic loss margin (Gb/s)

Autonomous Capacity Allocation

a(t) Action time t (b/s)

Flow

Monitoring Capacity

Traffic
Analyzer

Flow Manager

Required Capacity
(Phase II and III)

Traffic,
Capacity

Analyzer

Reward
Analyzer

Reward

Required CapacityTraffic,
Capacity

Flow Simulator

Decision Making

Traffic DB
Traffic

Generation

QoS
Estimation

Metering

Flow
Simulation

Set ()

Train new Model
(params)

Offline Learning
(Sandbox Domain)

RL-based Operation

From SDN
Controller

QoS

Required Capacity
(Phase I)

Traffic,
Capacity

New Model

RL Framework
(Learner, Agent, Environment)

RL Framework
(Learner, Agent, Environment)

 D4.3 GA Number 101016663

88

na Number of discrete actions
s(t) State at time t
ns Number of discrete states

r(t) Reward at time t
k Threshold-based scaling factor
βi Reward function coefficients (≥0)

Problem Definition and Basic Modeling
Let us consider that the autonomous flow capacity management problem is solved periodically,

when a new set of measurements, statistics, and parameters for the traffic flow x are collected

and computed. Along this section and the following, we adopt the informational representation

of time, where t represents a point in time that refers to the time interval [t - 1, t). Specifically,

x(t) represents the traffic measurements collected in [t - 1, t), and statistics, such as the

maximum (xmax(t)) and variation (xvar(t)), summarize traffic dynamicity during that time interval.

Additionally, decisions made at time t, e.g., the capacity to be allocated (z(t)), consider data that

arrived up to time t.

The main objective of the CRUX problem is to find the optimal (minimum) capacity z(t) at time t
that satisfies a desired QoS. In this work, we assume that that the QoS is defined by a desirable
maximum end-to-end delay dmax; this also entails that packet loss is not tolerated during flow
operation.

Without loss of generality, we assume that the delay can be modeled as a function of the traffic
volume, the allocated capacity for the flow, the load (ratio traffic/capacity), and other
components such as the transmission delay (load–delay models). Such load–delay models can
be obtained during the commissioning testing phase using, e.g., active monitoring techniques.
Once the model is available, a target load l* unleashing the target maximum delay dmax can be
selected. Figure 69 illustrates an example of a load–delay model, where dmax has been selected
to a value where queueing delay becomes the predominant delay component, e.g., for l* = 80%.

Figure 69. Load-delay model example.

A policy (threshold) -based approach can be used to make decisions from the currently available

monitoring data, as defined in eq. (11), where k is a constant factor that is related to the traffic

dynamicity and variability; k needs to be tuned to guarantee the required QoS. However, finding

the proper value of k is not a straightforward task: if the value of k is high, QoS is ensured at the

cost of high overprovisioning, whereas if the value of k is low, QoS requirements might be not

met. In addition, decisions are reactive, so altogether, sub-optimal solutions are usually

obtained.

𝑧(𝑡) = 𝑘 · 𝑥𝑚𝑎𝑥(𝑡) 𝑙
∗⁄ (11)

The optimal capacity allocation to the CRUX problem requires knowledge of the expected traffic

to allocate the capacity of the flow at time t-1 to the value that fits the expected maximum load

for the period [t-1, t) (proactive decision making), i.e.:

load (l)

d
e

la
y

dmax

l*0 1

 D4.3 GA Number 101016663

89

𝑧∗(𝑡 − 1) = 𝑥𝑚𝑎𝑥(𝑡) 𝑙
∗⁄ (12)

In the case that the capacity allocation is not optimal, some capacity slack / surplus (o) will exist,

which can be formally computed at time (t) as follows:

𝑜(𝑡) = 𝑧(𝑡 − 1) − 𝑥𝑚𝑎𝑥(𝑡) 𝑙
∗⁄ (13)

Figure 70 sketches an example of a traffic flow x(t) for which some capacity allocation z(t) is

required. In the figure, the optimal capacity z*(t) that should be allocated at time ti-1 is shown.

The different colors provide a visual representation of the values of o(t). In particular, two

different sub-optimal capacity allocations can be distinguished (see labels in Figure 70a): i) if z(t)

> z*(t) (i.e., o(t)>0), QoS requirements are met at the expense of an excess of overprovisioning;

ii) if z(t) < z*(t) (i.e., o(t)<0), QoS requirements are violated.

Figure 70. Capacity allocation definition (a) and evolution (b).

The width w(t) of the high delay area is formally defined as a function of the maximum traffic in

eq. (14). Therefore, traffic loss appears if o(t) ≤ -w(t).

𝑤(𝑡) = 𝑥𝑚𝑎𝑥(𝑡) ∗
1 − 𝑙∗

𝑙∗
 (14)

It is worth noting that the quality of a solution taken at time t - 1 can only be evaluated at time

t, which motivates the use of RL to learn the optimal policy that allocates the minimum value of

z(t) to meet the QoS requirements. The details of the RL-based methodology are presented in

next subsections.

Generic RL-Based Methodology
Figure 71 illustrates the RL workflow, where the main three elements involved are represented,

namely: (i) the learner in charge of learning the optimal policy; (ii) the agent in charge of taking

actions to adjust the capacity allocated to the flow; (iii) the environment adaptation module in

charge of implementing and evaluating the actions taken; and (iv) the flow manager, which

enforces the capacity and collects traffic measurements. Three time periods are specified, from

t0 to t2; let us assume that some initial policy model has been set in the agent before operation

starts at time t0, when the agent applies the first action a(t0).

 D4.3 GA Number 101016663

90

Figure 71. General RL workflow.

For the sake of simplification and to reduce complexity, action a(t) is defined in eq. (15) as the

differential capacity with regard to the current one. Actions are processed by the environment,

which computes the new capacity z(t) to be allocated.

𝑎(𝑡) = 𝑧(𝑡) − 𝑧(𝑡 − 1) (15)

The flow manager periodically sends traffic monitoring data to the environment, which

processes them at the end of every time interval to compute state s(ti) and reward r(ti). Upon

receiving the state, the agent finds the action a(ti) to be taken with the current policy. In

addition, the learning process uses state, reward, and action to improve the model, which is

updated in the next time interval. The state function s(t) is defined in terms of o(t) normalized

by a parameter y(t) (eq. (16)(17)), which is conveniently set up using parameter ρ to absorb the

traffic variation observed in the flow (eq. (17)).

𝑠(𝑡) = 𝑜(𝑡)/𝑦(𝑡) (16)

𝑦(𝑡) = 𝜌 ∙ 𝑥𝑣𝑎𝑟(𝑡) (17)

As for the reward r(t), the objective is to minimize overprovisioning, without providing high

delay. To ensure that, the higher delay must be obtained by producing some overprovisioning.

To that end, we have defined a piece-wise function with four different regions in the range of

o(t), representing the sub-optimal cases. Such division allows for individual modes of operation

that correspond to an adequate reward in each case. The reward function r(t) is formally

expressed in eq. (18) and illustrated in Figure 72. The first and second components of r(t)

penalize traffic loss and high delay, respectively. Both components are linear functions of o(t),

where coefficients β1 and β2 can be tuned to penalize traffic loss and high delay. The third

component gives the maximum reward, which is slightly shifted to the positive values of o(t) to

reduce the risk of QoS violation. This segment is concave quadratic with regard to the relation

o(t)/y(t), with the maximum value weighted by coefficient β3. Finally, overprovisioning above

y(t) is linearly penalized by coefficient β4.

a(t0) Allocate z(t0)

…

Mon. data
Mon. data

Mon. data
s(t1), r(t1)

Learn

Allocate z(t1)

a(t1)

…

Mon. data
Mon. data

Mon. data

Allocate z(t2)a(t2)

s(t2), r(t2)

Agent Environment Flow MgrLearner

t0

t1

t2

model

model
…

Mon. data
Mon. data

a(t1)

a(t2)

 D4.3 GA Number 101016663

91

𝑟(𝑡) =

{

𝛽1 · (𝑜(𝑡) − 𝑤(𝑡)) + 𝛽2 · 𝑤(𝑡), 𝑜(𝑡) < −𝑤(𝑡)

𝛽2 · 𝑜(𝑡), −𝑤(𝑡) ≤ 𝑜(𝑡) < 0

𝛽3 · (1 −
𝑜(𝑡)

𝑦(𝑡)
) ·
𝑜(𝑡)

𝑦(𝑡)
, 0 ≤ 𝑜(𝑡) < 𝑦(𝑡)

−𝛽4 · (𝑜(𝑡) − 𝑦(𝑡)), 𝑜(𝑡) ≥ 𝑦(𝑡)

(18)

Figure 72. Reward function vs. capacity slack/surplus.

Specific Adaption of RL Approaches
As introduced in Section 1, three RL methods are considered to solve the CRUX problem, namely:

(i) Q-learning, (ii) D3QN, and (iii) TD3.

For each method, the main adaptation of the generic problem definition is to discretize state

and action spaces. Q-learning requires discretizing the continuous state function s(t) in eq. (16)

into a number of discrete states (ns). Such discrete state function s’(t) can be formally expressed

as eq. (19). Discrete states 0 and ns - 1 indicate underprovisioning and overprovisioning above

margin y(t), respectively, whereas the rest states ns - 2 are used to evenly discretize the

overprovisioning below margin y(t).

𝑠′(𝑡) = {

0, 𝑠(𝑡) < 0
⌈(𝑛𝑠 − 2) · 𝑠(𝑡)⌉, 𝑠(𝑡) ∈ [0,1]

𝑛𝑠 − 1, 𝑠(𝑡) > 1
 (19)

In addition, Q-learning and all DQN variants require a discrete space of na actions. Let us define

a’(t) as the set of discrete actions, where a discrete action is defined by an integer number of

units of capacity b to update (add or subtract) the current capacity. The discrete set of actions

that depend on both na ∊ 2 * ℕ - 1 (natural odd number) and b can be formally defined as:

𝑎′(𝑡) ∈ {𝑏 · 𝑖, 𝑖 ∈ [−
𝑛𝑎 − 1

2
,
𝑛𝑎 − 1

2
]} (20)

Table 18 summarizes the main characteristics and parameters to be configured for each method.

Table 18. Summary of RL approaches.

Approach State Space Action Space Parameters

Q-learning Discrete, eq. (19) Discrete, eq. (20) ns, na, b

D3QN Continuous, eq. (16) Discrete, eq. (20)
na, b, DNN config, Replay

buffer

TD3 Continuous eq. (16) Continuous, eq. (20)
Actor/critic DNN config

Replay buffer

High delayTraffic loss

underprovision

overprovision

-100

-80

-60

-40

-20

0

20

-40 -20 0 20 40
Capacity Slack / Surplus (o)
-w 0 y

R
e

w
ar

d
(r

)

 D4.3 GA Number 101016663

92

6.3.3 Cycles for Robust RL

This subsection is devoted to the details of the operation lifecycle presented in Figure 67b. Let

us assume that when a new path for a flow is set up, an instance of every element in the

architecture in Figure 68 is instantiated. The characteristics of the instances depend on the flow

requirements, e.g., pre-trained generic models loaded in the Offline Learning block are those

that were trained with similar QoS requirements (dmax and qa) to those of the current flow. When

the operation starts, no online RL models exist and the maximum capacity for the flow zmax is

allocated. All the algorithms presented next run in the Analyzer block (see Figure 68), which

makes decisions and orchestrates the rest of the blocks based on some analysis results.

Algorithm 11 shows the Analyzer initialization that receives the pointers to external modules

that interact with the Analyzer, i.e., offline learner, online RL, and flow manager, and stores them

(line 1 in Algorithm 1), and initializes the main variables used by the rest of the procedures. In

particular, DB contains the needed traffic-related data for the analysis carried out at every phase

(line 2), params is a vector with the parameters that characterize flow’s requirements and some

configuration and that are used during the different phases (line 3), and phase records the

current phase, which is initialized to Phase I (line 4).

Before describing the algorithms for the different phases, let us present a specific procedure for

traffic variance analysis. Algorithm 12 is applied to the set of observed traffic-related

measurements, stored in DB, with the objective of characterizing and quantifying the fluctuation

of the traffic around its observed average. After retrieving data time series contained in DB, the

average pattern on the given traffic time series X is computed (lines 1–2 in Algorithm 2). Note

that the result of this operation produces time series Xavg, with the smoothed average that better

fits X. Without loss of generality, we assume that a combination of regression techniques

including polynomial fitting, spline cubic regression, and sum-of-sin regression is applied,

returning the best result in terms of accuracy and model complexity. The relative residuals are

computed (line 3) and the difference between maximum and minimum of these residuals (var)

is considered as the traffic variance measurement (line 4). This value together with the previous

var measurements stored in DB (time series Y) are used to compute the derivative drv of var in

time, i.e., the first-order difference (lines 5). The last value in drv denotes the current derivative,

which is later used for the identification of the traffic variance (line 6). In addition, a variance

score is computed as the maximum absolute derivative value normalized by the observed

variance (line 7). The score approaches 1 if the traffic fluctuates around its maximum range

between two consecutive time measurements. This score will be used later for generic model

tuning purposes. The computed variance results are eventually returned (line 8).

Algorithm 11. Analyzer Initialization

INPUT: offlineLearn, onlineRL, flowMgr OUTPUT: -

1:
2:
3:

4:

store(offlineLearn, onlineRL, flowMgr)
initialize DB
params ← [<l*, zmax, k, eps>, // Phase I

<qa, cfl, ∆ρ>, // Phase II
<var_l, var_h, r_l, m>] // Phase III

phase ← PhaseI

Algorithm 12. varianceAnalysis().

INPUT: DB OUTPUT: V

1:
2:
3:

<X,Y > ← < DB.traffic, DB.var>
Xavg ← computeAveragePattern(X)
Xres ← (X—Xavg) ⨀ X−1

 D4.3 GA Number 101016663

93

4:
5:
6:
7:
8:

var ← max(Xres)—min(Xres)
Y.append(var)
drv ← computeDerivative(Y)
score ← max(|drv|)/var
return <var = var, curdrv = drv[-1], score = score >

Algorithm 13 specifies the main procedure running in the Analyzer block and it is called

periodically every time t. First, new traffic monitoring data are gathered from the flow manager

(line 1 in Algorithm 13). Then, the specific procedure for each phase is called with the current

time and the collected data, and the phase changes only when the called procedure returns True

(lines 2–10); DB is initialized every time phase changes (line 11).

Algorithm 13. Main Analyzer Procedure

INPUT: t OUTPUT: -

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:

x(t)←flowMgr.getMonitoringData(t)
if phase = PhaseI then

changePhase ← thresholdBased(t, x(t))
if changePhase then phase ← PhaseII

else if phase = PhaseII then
changePhase ← modelSelectionAndTuning(t, x(t))
if changePhase then phase ← PhaseIII

else // phase = PhaseIII
changePhase ← specificModel(t, x(t))
if changePhase then phase ← PhaseII

if changePhase then initialize DB

Algorithm 14. thresholdBased() (Phase I)

INPUT: t, x(t) OUTPUT: changePhase

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:

DB.traffic.append(x(t))
V ←varianceAnalysis(DB)
if |V.curdrv| < eps then

<f0, ρ0, sc0>← offlineLearn.getGenericModel(V.var)
ρ1←ρ0∙(sc0 / V.score)
onlineRL.setModel(f0, ρ1)
return True

DB.var.append(V.var)
k(t)←max(1, V.var / (1-l*))
if k(t)>k then k←k(t) else k←k - (k(t)-k)/2
flowMgr.setupCapacity(max(k · max(x)/l*, zmax))
return False

Algorithm 14 defines the operation of the Analyzer block during Phase I. Recall that during this

phase, flow capacity allocation is managed following a threshold-based procedure, defined by

eq. (11). First of all, DB is updated with the new monitoring data and the variance analysis

described in Algorithm 12 is executed, storing the result in variable V (lines 1–2 in Algorithm 14).

Then, the absolute value of the current derivative is compared with a small epsilon value (param

eps) to decide whether enough traffic data have been already analyzed to estimate variance

with high accuracy (line 3). If so, a generic pre-trained model f0 for the computed variance is

retrieved from the offline learner and factor ρ0 is scaled with the ratio of scores between the

generic model and the observed traffic (lines 4–5); the scaled factor increases (decreases) if the

computed score is higher (lower) than the score of the generic model. The rationale behind such

factor correction is to achieve a more robust and conservative operation of the generic model

 D4.3 GA Number 101016663

94

under the actual traffic variance behavior. Then, the online RL module is updated with new

model f0 and scaled factor ρ1 and Phase I ends (lines 6–7).

In case the current derivative is still high, the threshold-based capacity allocation procedure

continues. Here, factor k in eq. (11) is adapted from its input value as soon as more traffic data

are available and traffic variance is better estimated. With the estimated variance and target

load l*, factor k(t) is computed. Then, k is updated in two different ways: (i) reducing by half

between k and k(t) if k is larger than needed; or (ii) replaced by k(t) if is k is lower than needed

(lines 8–10). The flow manager is requested to modify the flow capacity to the computed z(t),

which is bounded by the maximum capacity zmax (line 11) and Phase I continues (line 12).

Algorithm 15 details the procedure during Phase II. Traffic data collected from the flow manager

are sent to the offline learner block for updating a historical traffic database used to train RL

models offline in the sandbox (line 1 in Algorithm 15). The offline model training procedure runs

in parallel in the sandbox domain. When enough traffic measurements are collected and

processed and an accurate and robust offline-trained RL model is available, it is sent to the online

RL block to be used for flow capacity operation; this ends Phase II (lines 2–5). Otherwise, Phase

II continues, aiming to identify whether the RL model currently in operation needs some

parameter tuning (in addition to model updates that the RL algorithm performs during

operation). In particular, this procedure aims to supervise the degree of QoS assurance (as

compared with the target value, qa) obtained by the current model and modifying factor ρ when

needed to achieve the target performance. Note that low overprovisioning is the secondary

objective and therefore, QoS assurance analysis requires computing whether the current

capacity violated maximum delay (o(t) < 0) or not (o(t) ≥ 0). The result is stored in DB (lines 6–

10).

Algorithm 15. ModelSelectionAndTuning() (Phase II)

INPUT: t, x(t) OUTPUT: changePhase

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18:

offlrn.updateTrafficDB(x(t))
if offlineLearn.newModelAvailable() then

<f, ρ>← offlineLearn.getModel()
onlineRL.setModel(f, ρ)
return True

xmax(t)=max(x)
z(t-1)← flowMgr.getCurrentCapacity(t)
o(t)←computeSlackSurplus(xmax(t), z(t-1)) // eq. (13)
if o(t)<0 then DB.QA.append(0)
else DB.QA.append(1)
pobs←avg(DB.QA)
pval_l←BinomialTest1(“pobs<qa”)
pval_g←BinomialTest2(“pobs>qa”)
if min(pval_g, pval_l)>cfl then

DB.QA←∅
if pval_l<cfl then onlineRL.tuneParam(‘ρ’, ∆ρ)
else onlineRL.tuneParam(‘ρ’, -∆ρ)

return False

Next, two different one-sample proportion binomial hypothesis tests are conducted to detect

whether the observed degree of QoS assurance is significantly below (test 1) or above (test 2)

the target value qa (lines 11–13). In the case that some of the hypotheses can be confirmed (on

the contrary, it is assumed that QoS assurance is in the target), ρ needs to be tuned. If hypothesis

test 1 is confirmed, some extra capacity allocation is needed, which is achieved by increasing ρ

 D4.3 GA Number 101016663

95

with a given step size ∆ρ. On the contrary, if hypothesis test 2 is confirmed, allocated capacity

can be reduced, so ρ is decreased by the same step size.

Algorithm 16. specificModel() (Phase III)

INPUT: t, x(t) OUTPUT: changePhase

1:
2:
3:
4:
5:
6:
7:

rw(t) ← onlineRL.getReward(t)
DB.traffic.append(x(t))
DB.reward.append(r(t))
if |DB.traffic|>m then DB.traffic.pop(0)
if |DB.reward|>m then DB.reward.pop(0)
V←varianceAnalysis(DB)
return V.var NOT IN [var_l, var_h] OR rw(t) < rw_l

Finally, Algorithm 16 describes the procedure running in the Analyzer during Phase III. This

algorithm analyzes the last m traffic measurements and the reward obtained by the online RL

(lines 1–6 in Algorithm 16). The objective of this analysis is to check whether both the current

traffic and reward follow the expected behavior (line 7). Let us assume that an extended

estimation of the working variance with range [var_l, var_h] is found during the offline training

phase—with a minimum and maximum variance that the RL model can support without losing

either robustness or desired performance. Bear in mind that operating a traffic flow with more

variance than what is supported by the model can lead to poor QoS assurance and even traffic

loss. On the contrary, a traffic flow with less variance can produce large overprovisioning, which

the online RL can hardly decrease with its fine adaption configuration. In fact, online RL

continuously adapts the model to smooth traffic changes with controlled reward fluctuations,

so that a minimum reward (rw_l) can be considered as the reasonable limit of a normal RL

operation. Therefore, Phase II is triggered back when traffic variance leaves the working range

of the RL model or the observed reward goes below that limit; otherwise, Phase III continues.

6.3.4 Illustrative Results

For the ongoing evaluation, a Python-based simulator reproducing the modules described in

Figure 68 was implemented. Realistic traffic flow behavior was accurately emulated using a

simulator based on the CURSA-SQ engine, which combines statistically based traffic flow

generation and continuous G/G/1/k queue model based on the logistic function; multiple

queuing systems can be numerically analyzed and related statistics, such as traffic magnitude,

queuing delay, and packet loss, be computed. In the context of this work, CURSA-SQ is used as:

(i) a lightweight network simulator to emulate a flow manager and the forwarding plane; and (ii)

a flow simulator running in the ML sandbox domain for offline RL training purposes. It is worth

highlighting that both CURSA-SQ instances have been independently configured and managed

in order to reproduce the actual separation between the physical network and the sandbox

domain.

Traffic was randomly generated according to different traffic configurations. Each traffic

configuration is the combination of traffic pattern and variance. Two different daily patterns

were considered: a simple sinusoidal pattern for offline training purposes, and a realistic pattern

to emulate the real traffic in the forwarding plane. In both cases, traffic fluctuates between 5

Gb/s (valley) and 40 Gb/s (peak) throughout the day. Regarding variance, it is defined as a

percentage of the mean, so the magnitude of traffic oscillations changes in time

(heteroscedasticity). For the sake of a wider analysis, we considered five different variance

values: 1%, 3%, 6%, 12%, and 25%.

RL algorithms running in the RL-based operation and offline learning modules have been

implemented in Python3 using libraries such as pytorch. A general epsilon decay strategy was

 D4.3 GA Number 101016663

96

implemented in all the RL methods for balancing between exploration and exploitation, with

decay factor equal to 0.00125. Moreover, a discount factor equal to 0.95 was set up. Q-learning

was configured with ns = 14 states and na = 3 actions, as well as capacity allocation granularity b

= 1 Gb/s. In the case of D3QN and TD3, every DNN consisted of two hidden layers with 100

neurons each implementing the Rectified Linear Unit activation function. All DNNs were trained

by means of the Adam replacement optimizer with learning rate equal to 0.001 and maximum

replay buffer equal to 1e6 samples.

Finally, the capacity and QoS parameters for the flow under study are maximum capacity zmax =

100 Gb/s, optimal load l* = 80%, and QoS assurance qa = 99%.

In the next two subsections, we first focus on comparing the different RL methods for the
scenario where the pure online learning RL-based operation is performed (see Figure 67a). Next,
we evaluate the offline leaning + online RL-based operation (Figure 67b), including the three
proposed phases.

Online RL-Based Operation
Let us first analyze the reliability of the RL operation under real traffic; we focus specifically on

the traffic loss. For this study, low (1%) and high (25%) variances were considered. Figure 73

plots the traffic loss as a function of time from the path set-up time. We observe extremely poor

performance (high loss) at the beginning of operation, as it was anticipated in Figure 67a.

Interestingly, we observe that the simplest Q-learning method provides the fastest convergence

time to achieve zero loss, although it needs more than one day to achieve zero loss operation

when traffic variance is high. Note that D3QN is the most sensitive to traffic configuration (zero

loss operation time increases three times from low to high variance). TD3 is the method with

the slowest convergence (around 4 days).

Figure 73. Achieving zero loss operation.

As all the RL methods have achieved zero loss operation, the rest of the results analyze the

performance after 5 days of operation. As an illustrative example of the RL-based operation,

Figure 74 shows one day of real traffic x(t) and variance from low to high, as well as the capacity

z(t) allocated using Q-learning; optimal ρ for each variance is configured. The optimal capacity

allocation (o(t) = 0) and the margin for overprovisioning y(t) are also plotted. We observe that

the allocated capacity is close to the optimal one, absorbing fluctuations with enough margin to

meet the target QoS.

 D4.3 GA Number 101016663

97

Figure 74. Q-Learning operation. Traffic and allocated capacity for low (a), moderated (b), and

high (c) traffic variance.

Let us now analyze the impact of the margin multiplier ρ to achieve the desired QoS. Figure 75

shows the obtained QoS assurance as a function of ρ. For the sake of a comprehensive study, all

traffic configurations for sinusoidal (Figure 75a–c) and real (Figure 75d–f) traffic patterns have

been analyzed. The minimum ρ value has been set to 1. The ρ values for which the target QoS

of 99% is achieved are highlighted with a round marker. We observe in the results that ρ depends

not only on the traffic characteristics, but also on the RL method.

Figure 75. QoS as a function of ρ models trained with a sinusoidal traffic pattern (a–c) and real
traffic (d–f).

Interestingly, Q-learning needs the widest range of values for all traffic configurations, requiring

a smaller ρ as soon as variation increases. It is worth noting that the large range of values ([1.9,

6.4]) makes it more difficult to adjust ρ for different traffic configurations. Conversely, D3QN

and TD3 show a smaller ρ range and opposite behavior as ρ increases with the traffic variance.

The detailed evolution of the optimal ρ with respect to the traffic variation is plotted in Figure

76a, and Figure 76b shows the total overprovisioning introduced by every RL method operating

with the optimal ρ. We observe that overprovisioning increases with traffic variation, with a

slightly different trend depending on the traffic pattern (sinusoidal and real). Moreover, every

RL method introduces different amounts of overprovisioning as shown in Figure 77, where the

relative overprovisioning per RL method with respect to the minimum one for every traffic

configuration is represented. Q-learning is the method that requires larger overprovisioning in

10

20

30

40

50

60

70

80

90

100

10

20

30

40

50

60

70

80

90

100

Time (t) [hh]

Tr
af

fi
c

a
n

d
 C

ap
ac

it
y

[G
b

/s
]

2400 03 06 09 12 15 18 21

Time (t) [hh]

y(t)

z(t)

o(t) = 0

x(t)

variance = 25%
ρ = 2.0

2400 03 06 09 12 15 18 21

(a) (c)

10

20

30

40

50

60

70

80

90

100

variance = 1%
ρ = 2.8

variance = 6%
ρ = 2.9

(b)

Time (t) [hh]
2400 03 06 09 12 15 18 21

 D4.3 GA Number 101016663

98

general terms, whereas D3QN and TD3 show better performance. Interestingly, the differences

are proportionally larger when traffic variation is small.

Figure 76. Optimal margin multiplier (a) and overprovisioning (b).

Figure 77. Relative extra overprovisioning.

Let us analyze the effect in terms of extra-overprovisioning when ρ is fixed to a constant value,

high enough to assure reliable QoS performance in online RL operation under traffics with a wide

range of characteristics. The squared purple markers in Figure 75a indicate the QoS that could

be achieved under different traffic characteristics for the largest ρ. Table 19 summarizes the

relative and absolute increment of overprovisioning (computed in total Tb per day of operation)

produced with the most conservative ρ configuration for all traffic configurations and RL

methods. When the fixed ρ happens to be the optimal one for the traffic and RL method, no

additional overprovisioning is set up (values in boldface); otherwise, additional overprovisioning

is introduced. Q-learning is the method that adds the largest extra overprovisioning (exceeding

200% and 30 Tb/day). In any case, it is worth highlighting that achieving optimal performance in

terms of QoS assurance while achieving efficient capacity allocation requires some method to

find the optimal ρ for the traffic characteristics.

To conclude this section, we can highlight (i) that the CRUX problem proposed in Section 2 can

be tackled using RL; under different traffic characteristics and RL methods, the target QoS is

assured with reduced overprovisioning; (ii) online RL operation leads to traffic loss at the

beginning of flow capacity operation; this fact prevents us from using RL until online learning

has come up with a robust and reliable model to guarantee autonomous flow operation; and

(iii) the comparison of the RL methods shows interesting differences among them. While Q-

learning learns fast, it also produces larger overprovisioning. D3QN and TD3 need more time to

ensure zero loss and adjust QoS at the benefit of reducing overprovisioning.

0

2

4

6

8

10

12

14

16

18

20

0 5 10 15 20 25

Q-learning [sin] Q-learning [real]
D3QN [sin] D3QN [real]
TD3 [sin] TD3 [real]

Traffic variation [%]

0

1

2

3

4

5

6

7

0 5 10 15 20 25
Traffic variation [%]

O
p

ti
m

al
M

ar
gi

n
M

u
lt

ip
lie

r
(ρ

)

O
ve

rp
ro

vi
si

o
n

in
g

[T
b

/d
ay

]

(a) (b)

Real

Sinusoidal

Q-learning
D3QN
TD3

0%

10%

20%

30%

40%
Q-L
D3QN
TD3

0%

10%

20%

30%

40%

1 3 6 12 25
Traffic variation [%]

[real]

[sinusoidal]

Ex
tr

a
o

ve
rp

ro
vi

si
o

n
in

g
[%

]

Q-learning
D3QN
TD3

 D4.3 GA Number 101016663

99

Table 19. Additional overprovisioning when fixing ρ conservatively.

Traffic
Pattern

Traffic
Variance

Q-Learning D3QN TD3

% Tb/day % Tb/Day % Tb/Day

Sinusoidal

1% 0.00% 0 0.88% 0.02 2.49% 0.05
3% 19.18% 0.67 6.04% 0.16 20.67% 0.51
6% 38.71% 1.85 5.21% 0.21 15.38% 0.63

12% 44.15% 3.56 0.00% 0.00 4.01% 0.32
25% 60.40% 8.29 0.00% 0.00 0.00% 0.00

Real

1% 0.00% 0 0.05% 0.00 4.95% 0.11

3% 106.68% 3.94 9.52% 0.28 0.39% 0.01

6% 192.50% 9.52 12.72% 0.60 2.90% 0.14

12% 200.69% 18.37 0.00% 0.00 0.00% 0.00

25% 219.35% 34.46 0.00% 0.00 0.00% 0.00

Offline Leaning + Online RL-Based Operation
Let us now focus on evaluating the operational approach detailed in Figure 67b, which consists

of three phases. Before emulating flow operation, we generated synthetic data for all the traffic

variances following the sinusoidal traffic pattern and used them to pre-train generic models

independently for each traffic configuration and RL method. We ran every offline RL training for

14,400 episodes to guarantee QoS assurance with minimum overprovisioning.

Starting with the analysis of Phase I, Figure 78a shows an illustrative example of the evolution

of the capacity during the operation of the threshold-based algorithm (Algorithm 14) for the real

traffic pattern and variation 12%. Actual traffic x(t), allocated capacity z(t), and the evolution of

the self-tuned k parameter are also shown. Note that k quickly evolves from its initial value (k =

4) to reach a capacity closer to actual traffic. However, as soon as the load exceeds the optimal

one l*, k is increased until reaching a stable value (1.47), which happens after 60 minutes of

operation. The inset table in Figure 78a details the values of k after one hour of operation for all

traffic configurations. It is worth noting that the self-tuned threshold-based algorithm operates

with zero traffic loss for all the cases.

Figure 78. Phase I: Self-tuned threshold (a) and traffic variance analysis (b).

Parallel to the threshold-based operation, traffic variance analysis (Algorithm 12) is conducted

in order to compute the true variance of the traffic. Figure 78b shows the computed traffic

variation as a function of time for all traffic configurations. Round markers highlight when the

derivative of traffic variance reached a small eps = 0.01 and labels show the final computed

variance value. The low error between computed and true variances is noticeable. Such

estimation is achieved within two hours in all the cases.

0%

5%

10%

15%

20%

25%

30%

10 30 50 70 90 110
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80

x(t)
z(t)
k

Tr
af

fi
c

an
d

 C
ap

ac
it

y
[G

b
/s

]

Time since path set-up [mm]

k

Time since path set-up [mm]

var k
1% 1

3% 1
6% 1.04

12% 1.47

25% 1.81

(a) (b)
24.97%

12.56%

6.31%

3.27%

1.72%
1%
3%

6%

12%

25%

Tr
af

fi
c

V
ar

ia
ti

o
n

 D4.3 GA Number 101016663

100

Figure 79. Phase II: QoS (a) and ρ (b) evolution.

After two hours of operation, Phase II (Algorithm 15) can start and an RL method with a generic

pre-trained model for the true traffic variance is set to operate. The tuning of parameter ρ (∆ρ

= 0.1) and the resulting QoS are shown in Figure 79a and Figure 79b, respectively, for traffic

variance equal to 12%. To detect whether the measured QoS is considerably below or above the

desired qa value, a significance level cfl = 0.05 was used to be compared against the obtained p-

value from the binomial tests. We observe that ρ decreases up to a magnitude that produces

QoS below 99%; just after that, ρ increases and remains stable from that point on. As shown in

Figure 79a, the time to converge to the best ρ is 3960, 1440, and 3600 min (2.75, 1, and 2.5 days)

for Q-learning, D3QN, and TD3, respectively.

The above analysis, however, needs to be complemented with the overprovisioning to extract

meaningful conclusions. Figure 80 presents the overprovisioning obtained by every RL method

before and after tuning ρ in Phase II. For reference purposes, the overprovisioning introduced

by the threshold-based algorithm during Phase I is also included as a dotted line. The large

benefits in terms of overprovisioning reduction for the RL-based operation with regard to the

threshold-based algorithm are remarkable—up to 45% of capacity allocation reduction and 11

Tb/day of total capacity savings for one single flow. After ρ tuning, D3QN shows the worst

performance, as Q-learning and TD3 achieved significantly lower overprovisioning (24%, ~3

Tb/day). Figure 80 also shows the obtained overprovisioning when the specific model (trained

offline with the collected traffic) is loaded in Phase III after 10 days of operation. We observe

that Q-learning and TD3 reduce overprovisioning slightly, whereas a larger reduction is achieved

with D3QN; we conclude that the former RL methods are less dependent on an accurate model

of the specific traffic to achieve optimal capacity allocation.

Figure 80. Overprovisioning reduction.

Finally, let us analyze the performance of Algorithm 16 to detect traffic changes while flow is

operated in Phase III; recall that such detection immediately triggers Phase II. To this end, we

1

1.2

1.4

1.6

1.8

2

0 1000 2000 3000 4000 5000

Q-learning
D3QN
TD3

98%

99%

100%

0 1000 2000 3000 4000 5000
Phase II time [mm]

Q
o

S
ρ

(b)

(a)
1

100% 3960

1440

3600

0

5

10

15

20

25

30

Phase II (Before tuning) Phase II (After tuning) Phase III

Q-Learning
D3QN
TD3

Threshold-based

~45%
~11 Tb/day ~24%

~3 Tb/day

O
ve

rp
ro

vi
si

o
n

in
g

[T
b

/d
ay

]

Phase

 D4.3 GA Number 101016663

101

generated four different scenarios, combining two different types of changes in traffic variance

while keeping traffic profile unchanged. We evaluate gradual and sudden/increase or decrease

traffic variance changes. Figure 81 illustrates two out of four scenarios: gradual increase

(variance gradually increases from 1% to 25% along 5 days) and sudden increasing (from 1% to

25% in just one minute); an inverse trend is configured for gradual and sudden decrease

scenarios.

Table 20 details the time to detect the traffic change when the variance range was configured

as [var_l, var_h] = [−10%, +10%]; the current traffic variance and minimum reward rw_l was set

to 5% of the minimum observed reward (see Algorithm 16). We observe that the proposed

mechanism ensures prompt reaction under any of the studied changes—immediate detection

is achieved when a sudden change happens, and no more than one hour is required for gradual

change detection.

Figure 81. Phase III: Traffic variance change scenarios. Gradual increase (a) and sudden increase

(b).

Table 20. Phase III: Analysis under traffic changes.

Traffic Change
Scenario

Detection
Time
(min)

QoS at Detection Time (%)
Reward Degradation
(Min from Detection)

Q-L D3QN TD3 Q-L D3QN TD3

Gradual increase 45 99.30 100 100 419 595 585

Gradual decrease 650 99.86 99.44 99.72 3354 2440 2233

Step increase 1 99.17 99.86 99.86 332 413 433

Step decrease 1 99.03 99.44 99.44 494 683 212

To evaluate the promptness of detection, Table 20 considers the observed QoS at the detection

time, as well as the elapsed time between detection time and the time when reward begins to

degrade (reveals whether the RL module is working properly). Note that the detection happens

when the QoS is still above the target value in all the cases. This is proof of anticipation of the

change detection, which is key to guarantee robust and reliable RL-based operation.

6.3.5 Concluding Remarks

The Flow Capacity Autonomous Operation (CRUX) problem has been introduced to deal with

online capacity allocation of traffic flows subject to dynamic traffic changes; it guarantees precise

QoS requirement assurance and minimizes capacity overprovisioning. RL-based operation was

proposed to learn the best policy for the traffic characteristics and QoS requirements of a given

flow. RL allows adaptive and proactive capacity allocation once the optimal policy is learnt.

However, pure RL operation lacks robustness during online learning (e.g., at the beginning of

flow operation and in the event of traffic changes) and might result in undesirable traffic loss.

However, this can be avoided using simpler reactive threshold-based capacity allocation.

 D4.3 GA Number 101016663

102

In view of the above, an offline + online learning lifecycle was proposed, aiming at providing

guaranteed performance during the entire lifetime of the traffic flow. The proposed

management lifecycle consists of three phases. Firstly, a self-tuned threshold-based approach

was proposed to operate just after the flow is set up and until enough evidence of the traffic

characteristics are available (Phase I). Secondly, an RL operation based on models with a pre-

trained generic traffic profile but meeting specific traffic variance that was measured during

Phase I was executed (Phase II). Lastly, an RL operation with models trained for the real

measured traffic, while allowing an online RL to adapt to smooth traffic changes (Phase III). In

addition, during Phase III online traffic analysis and RL performance tracking was conducted to

detect sharper traffic changes that might require moving back to Phase II to keep high reliability.

The proposed lifecycle was implemented under three different RL models, namely, Q-learning,

D3QN, and TD3. While Q-learning allows for simple and easy-to-learn definition of policies under

discrete spaces of states and actions, D3QN and TD3 enable the application of more complex

policies based on deep learning models with continuous state space (D3QN) and continuous

action space (TD3).

Numerical evaluation of the proposed offline + online lifecycle under different RL techniques

was carried out, reproducing realistic traffic flows in a simulation environment. For

benchmarking purposes, comparative results against basic threshold-based operation and

online RL operation were also presented. The main conclusions extracted from the numerical

evaluation are summarized in Table 21, where colors are used to highlight the results. As

expected, online RL produces moderate to high loss (reaching peaks of 1–10 Gb/s) at the

beginning of the network operation. Among the different methods, Q-learning reached the

required QoS operation earlier (up to 6 times faster than TD3) at the expense of moderate to

large overprovisioning (up to 40% larger than TD3). On the other hand, D3QN and TD3 needed

more time to converge to the required QoS operation but resulted in considerably better

capacity allocation efficiency.

Table 21. Summary of results for policy-based and RL operation with and without offline

learning.

Approach Concept Threshold-based Q-Learning D3QN TD3

Policy-
based

Traffic loss Zero traffic loss
QoS assurance Since path set-up

Over-provisioning Very large

Online RL
Operation

Traffic loss Moderated loss Moderated loss High loss

QoS assurance After 2 days After 2 days After 5 days

ρ range for QoS assurance Wide Narrow Narrow

Over-
provision

conservative ρ Large Small Small

optimal ρ Moderate Small Small

Offline +
Online RL
Operation

Traffic loss Zero traffic loss Zero traffic loss Zero traffic loss Zero traffic loss

QoS assurance Since path set-up Since path set-up Since path set-up Since path set-up

ρ fine tuning effectiveness Large Moderated Large

Over-
provision

Gain

Phase I None

Phase I-> Phase II Moderated Large Large

Phase II Large Small Large

Phase II-> Phase III Small Large Small

Reliability (Phase III-> Phase II) High High High

The analysis of the numerical results of the proposed lifecycle leads to several conclusions.

Firstly, zero traffic loss and QoS assurance is guaranteed from path set-up regardless of the

chosen RL method. Secondly, Phase II allows a very efficient and robust operation based on pre-

 D4.3 GA Number 101016663

103

trained generic models that were tuned with specific traffic characteristics. Phase II clearly

outperformed threshold-based operation in terms of capacity utilization since it remarkably

reduced overprovisioning (up to 45%). Thirdly, all the methods reached outstanding capacity

efficiency (more than 50% of capacity reduction with respect to threshold-based operation)

without losing QoS performance in Phase III; Q-learning and TD3 behaved slightly better than

D3QN. Finally, the continuous analysis and tracking conducted during Phase III to detect traffic

changes allowed a prompt detection of sharp changes (between 1 and 650 minutes), triggering

Phase II from several hours to days before online RL operation suffered any significant

degradation.

6.4 DYNAMIC CONTROL OF P2MP CONNECTIVITY
P2MP connectivity, when supported by DSCM, leads to cost reduction in the presence of large

dynamic traffic scenarios if not all SCs need to be active when traffic is low. To dynamically

allocate SCs based on the traffic observed at the individual Txs in the leaves of a P2MP

connection a centralized module can be deployed in the SDN controller. Such approach can

provide gains in the maximum number of leaves that can be supported. However, that

centralized approach shows a number of drawbacks: i) it is still heavily reliant on the SDN

controller to communicate with the various Txs; ii) it intakes large amounts of observational

data, and iii) it requires to process the requests on a synchronous basis, and all near real-time

to follow traffic dynamics.

In this section, we distribute decision making down to the very transponders participating in the

P2MP connection and relieve the SDN controller from near real-time operation, hence

increasing scalability. To this end, we introduce agents with the ability to communicate among

them directly to create a MAS. The target is to achieve gains similar to those provided by the

centralized approach.

6.4.1 MAS-based Subcarrier Allocation

To show the main difficulty of moving decision making to the transponders, we focus on the

direction from the leaves to the hub (MP2P). Here, some sort of coordination is needed to avoid

two Txs using the same SC. Figure 82a illustrates the target scenario. Every Tx is tuned on the

portion of the spectrum assigned (dotted lines), within which its SCs are allocated.

 D4.3 GA Number 101016663

104

Figure 82: MP2P connectivity based on DSCM (a). SC allocation upon Tx1 request (b) and (c).

Neighbor shifting (d).

We define a normative MAS with two types of agents for the Txs and the Rx. There are various

interpretations of normative MAS from which we adopt the definition where the system is

governed by restrictions on patterns of behaviors of the agents in the system. In the proposed

MAS, Tx and Rx agents have distinctive norms that govern their behaviors. The proposed

algorithms rely on agent sociability, where agents can share knowledge to achieve their goals;

hence, communication is an important aspect of agents’ functionality. We define

communication channels capable of sending and receiving information between each Tx and the

Rx, while avoiding Txs communicating with one another.

The Tx agent is responsible for allocating enough capacity for the incoming traffic. Traffic

prediction is used to anticipate traffic dynamicity, and required capacity changes (activation or

deactivation of SCs) are requested to the Rx agent. The role of the Rx agent is to mitigate SC

oversubscription, which can occur when multiple Txs request the activation of a single SC. As for

the Rx agent, we consider two main functionalities, used in combination: i) a simple request

process, where a Tx agent makes a request and the Rx evaluates the spectrum in order to accept

or deny this request. This is shown in Figure 82b, where Tx1 sends a request for an increase in

capacity. The Rx replies with instructions for the Tx to occupy SC 4. Another example is shown

in Figure 82c, where the Rx is aware of a possible oversubscription of SC 5 and commands Tx1

to use SC 1; and ii) a neighboring Tx shifting in order to satisfy a Tx’s request. For example, in

Figure 82d, Tx2 requests additional capacity, but there is no free spectrum since SCs 5 and 8 are

already allocated. In that case, the Rx can ask the neighbor Tx3 to shift the SCs right and liberate

SC 8, so that Tx2 can allocate it.

6.4.2 Architecture and Agent Models

In the previous section, Tx and Rx agents played several roles, from capacity and SC management

to communication. However, the main role of MAS agents is to communicate with one another

to coordinate SC utilization in the MP2P connection and avoid oversubscriptions. The MAS Tx

agent also interacts with the local capacity manager which manages the capacity available

between the local Tx and the Rx to follow traffic dynamicity. Tx and Rx MAS agents also interact

 D4.3 GA Number 101016663

105

with the transponder agent responsible for SC operation, such as activation and deactivation to

meet capacity requirements, but it does not make any decision on the use of the spectrum. The

spectrum management role is now played by the MAS Rx agent. Figure 83 summarizes the

relationship among the different agents in the system and includes the main commands that

they exchange.

Figure 83: Relation between MAS and transponder agents

The MAS Tx agent role is simply to translate requests to/from the transponder agent to/from

the MAS Rx agent. However, the role of the MAS Rx agent is more complex as it has to coordinate

spectrum allocation of the whole MP2P connection. Algorithm 17 describes the Rx agent; it

receives a command and the ID of the Tx agent that issued it (we used the value -1 to indicate

an invalid ID) and returns the command to be executed by a Tx agent on a specific SC.

Algorithm 17. Rx Agent

INPUT: cmd, TxId OUTPUT: cmd, TxId, SCId

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

if cmd in {SCActivated, SCDeactivated} then

<cmd, TxId> ← pendingReq.remove()

if cmd == DEC then

SCId ←find_best(SCTable, TxId, RELEASE)

return {RELEASE, TxId, SCId}

if cmd == INC then

SCId ← find_best(SCTable, TxId, USE)

if SCId <> -1 then return {USE, TxId, SCId}

shift=<TxId, dir> ← find_neighborShift (

SCTable, TxId, SHIFT)

if not shift then return {USE, TxId, -1}

pendingReq.add(<cmd, TxId>)

return {SHIFT, shift.TxId, shift.SCId}

The Rx agent processes messages from Tx agents to request or release a SC and from the local

transponder agent when a SC has been actually activated or deactivated. Because operation is

asynchronous, a list of requests pending to be processed is maintained. Pending actions are

processed back after SCs are actually activated or deactivated (lines 1-2). In addition, the Rx

agent maintains an internal table with the status of every SC, which is checked and updated

when a request to release a SC or to get a free SC is received from a Tx agent.

When a request to release a SC is received (lines 3-5), the Rx agent finds which SC is the best to

be released as a function of the allocation of neighboring Txs. The SC selected is returned to be

sent to the requesting Tx agent. The allocation of a new SC entails more complexity (lines 6-12).

 D4.3 GA Number 101016663

106

If a neighboring SC to the Tx current allocation is free, then it is selected (lines 7-8). Otherwise,

a possible spectrum shifting (entailing the activation and deactivation of two SCs) of a

neighboring Tx is evaluated (lines 9-12). If a spectrum shifting is possible, it is requested to that

Tx agent and the current SC allocation request is added to the pending list.

6.4.3 Centralized Subcarrier Allocation

This section proposes an Integer Linear Programming (ILP) model to dynamically solve SC

allocation and reconfiguration. The problem statement is:

Given:

• the total spectrum available for the MP2P connection, represented by ordered set W = {w1,
w2, …, w|W|}, where |W| is the maximum number of wavelengths supported by the Rx.

• the set of candidate channels described by set C = {c0, c1, c2, … c|C|-1}, where c0 is the empty
set and every ci (i:1..|C|-1) is a subset of contiguous wavelengths of size 1..m, being m the
maximum number of wavelengths supported by each Tx. We assume all Tx with the same
characteristics.

• a set of Txs T={ti, t2, .., tn}, where every Tx t has an associated capacity requirement kt.

Output: the configuration of every wavelength and its assignment to every Tx, and the channel
assigned to every Tx.

Objective: 1) minimize the amount of lost traffic; 2) to minimize the number of used SC, thus
minimizing energy cost; and 3) minimize the number of SCs that are reconfigured.

The parameters and decision variables of the problem are:

αi Weights of the multi-objective function

kc Capacity of channel c

δtc Equal to 1 if channel c is a candidate for transponder t, 0 otherwise.

vtc Total number of active wavelengths w in channel c for transponder t.

rtc Whole number describing the number of wavelengths w, that were modified with

respect to ct.

ct Current channel selected for transponder t.

utc Whole number describing the difference between kt and kc.

δcw Equal to 1 if wavelength w is in use for candidate channel c, 0 otherwise.

stw Equal to 1 if Tx t current occupies wavelength w; 0 otherwise.

xtc Binary decision variable, equal to 1 if channel c is assigned to Tx t; 0 otherwise.

In order to ensure fast computation time, the number of possible solutions was limited through

a pre-calculation, where the set of channels C is calculated as 𝛿𝑡𝑐 = 1, ∀𝑡 ∈ 𝑇, 𝑐 ∈

𝐶 | 𝑜𝑣𝑒𝑟𝑙𝑎𝑝(𝑠𝑡𝑤 , 𝑐𝑡) || 𝑐 == 𝑐0 and δcw can be easily calculated for the channels. Additionally,

we compute 𝑢𝑡𝑐 = max(𝑘𝑡 − 𝑘𝑐 , 0) , ∀𝑡 ∈ 𝑇, 𝑐 ∈ 𝐶 | 𝛿𝑡𝑐 = 1 to calculate the traffic that could

be lost, 𝑣𝑡𝑐 = |𝑐|, ∀𝑡 ∈ 𝑇, 𝑐 ∈ 𝐶 to track the number of wavelengths in use, and 𝑟𝑡𝑐 =

| 𝑖𝑛𝑑𝑒𝑥(𝑐𝑡) − 𝑖𝑛𝑑𝑒𝑥(𝑐)|, ∀𝑡 ∈ 𝑇, 𝑐 ∈ 𝐶 to measure the number of SC reconfigurations made for

a potential new channel.

The mathematical programming formulation for the problem is as follows, where the objective

function (eq. (21)) minimizes the three defined objectives, which are weighted by the αi

parameters, where α1 > α2 > α3 to maintain the priority of the objectives. Constraint (22) ensures

that only one Tx can be assigned to one eligible channel, and constraint (23) ensures that every

wavelength can be occupied with, at most, one and only one SC from one single Tx.

 D4.3 GA Number 101016663

107

min∑∑[∝1· 𝑢𝑡𝑐 +∝2· 𝑣𝑡𝑐 +∝3· 𝑟𝑡𝑐] · 𝑥𝑡𝑐
𝑐∈𝐶𝑡∈𝑇

 (21)

subject to:

∑𝛿𝑡𝑐 · 𝑥𝑡𝑐 = 1

𝑐𝜖𝐶

∀𝑡𝜖𝑇 (22)

∑∑𝛿𝑡𝑐 · 𝛿𝑐𝑤 · 𝑥𝑡𝑐 ≤ 1

𝑐𝜖𝐶𝑡𝜖𝑇

∀𝑤𝜖𝑊 (23)

6.4.4 Results

In order to evaluate the proposed MAS system, a Python-based simulator was implemented to

reproduce the MP2P optical connection in Figure 82 and include the agents and communication

channels in Figure 83. Each Tx was equipped with 4 60Gb/s SCs (assuming 16QAM at 11 Gbaud).

Besides each Tx, a packet traffic generator was used to inject traffic following a typical daily

profile varying between 60 and 240 Gb/s, thus leading to capacity requests between 1 and 4

SCs. On the Rx side, 16 SCs were configured, thus leading to a maximum capacity of 960 Gb/s

for the whole MP2P connection.

Two traffic scenarios were considered, namely, in-phase and opposition-phase, with Txs

requiring either a similar or different (respectively) number of SCs at a given time. Figure 84

shows the total offered traffic (average and maximum) as a function of the number of Txs. The

in-phase scenario presents a high peak/average ratio (1.7) similar to that of a single Tx traffic.

Thus, although 4 Txs produce moderate average traffic, the maximum reaches Rx capacity limit.

On the other hand, as a consequence of traffic multiplexing, the opposition-phase scenario

presents a much lower peak/average ratio (1.1), reaching maximum Rx capacity when 6 Tx are

considered.

Figure 84: Offered Traffic at Rx Figure 85: MAS vs Centralized Figure 86: SC reconfigurations

Two different configurations for the MAS Rx agent with increasing functionalities were

evaluated: i) Simple Request, corresponding to the process illustrated in Figure 82b-c and

defined by lines 1 to 8 in Algorithm 17; and ii) Neighbor Shifting, adding the process illustrated

in Figure 82d to the previous functionalities and defined by the whole Algorithm 17. Figure 85

shows the performance of the MAS Rx agent configurations as a function of the number of Txs.

For benchmarking purposes, the synchronous centralized approach based on the optimization

model was implemented and executed every minute with monitoring data received from Txs. In

light of Figure 85a, we can conclude that, under the in-phase scenario, both MAS configurations

reached a similar performance to the centralized one, accepting 4 Tx without loss and 5 Txs with

 D4.3 GA Number 101016663

108

moderated loss ~3%. However, under the opposition-phase scenario (Figure 85b), the maximum

of 6 Tx without loss is achieved by both centralized and MAS with neighbor shifting.

Complementing the previous results, Figure 86 shows the average number of SC

reconfigurations per Tx for both traffic scenarios. Values are normalized to the number of

reconfigurations with only one Tx. We observe that both methods perform the same number of

SC reconfigurations when the spectrum is not at saturation; when the spectrum is near

saturation, the MAS with neighbor shifting performs more reconfigurations to accommodate Tx

requests.

Finally, Table 22 focuses on MAS with neighbor shifting and summarizes the average number of

messages exchanged between a Tx and the Rx at a given time, as well as the percentage of those

messages belonging to the neighbor shifting process. We observe that a moderated number of

extra messages (up to 24% w.r.t that of the simple request process) are enough to eliminate loss

and achieve near-optimal performance.

Table 22. Message Exchange Analysis

Tx In-phase Opposition
avg(msg/Tx) % shifting avg(msg/Tx) % shifting

4 1.67 0% 1.78 0%
5 2.02 17% 1.86 6%
6 1.72 2% 2.35 24%

6.4.5 Conclusions

We showed that dynamic SC allocation brings significant capital and operational cost reduction

in P2MP connectivity, as compared to the static SC allocation. A MAS system for near real-time

optical SC allocation has been presented. The distributed MAS reaches similar gains to

centralized SC management. However, by moving decision making to the transponders in the

P2MP connection a much more scalable solution can be created, thus relieving the SDN

controller from operation after the provisioning phase.

 D4.3 GA Number 101016663

109

7 CONCLUSIONS

Different approaches to reduce operation overheads have been shown in this deliverable,

targeting: (i) overprovisioning minimization though planning and orchestration; (ii) predictive

failure management to minimize operational expenditures; and (iii) simplification of network

and service operations, through digital twining solutions and near-real time control of network

resources.

Although the assessment of many of the solutions are from simulation and numerical evaluation,

experimental implementations and results are also shown, thus demonstrating the feasibility of

the autonomous network operation and showing the need for larger efforts to bring such

solutions to real network operator infrastructures.

 D4.3 GA Number 101016663

110

REFERENCES

[Bos14] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford, C.
Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker, “P4:
Programming protocol-independent packet processors,” SIGCOMM
Comput. Commun. Rev., vol. 44, no. 3, p. 87–95, jul 2014. [Online].
Available: https://doi.org/10.1145/2656877.2656890

[AIS23] G. S. Aiswarya, M. Mariah, R. Katragadda and R. Makam, “Control of Self-
Driving Cars using Reinforcement Learning,” 2023 IEEE International
Conference on Electronics, Computing and Communication Technologies
(CONECCT), Bangalore, India, 2023, pp. 1-6, doi:
10.1109/CONECCT57959.2023.10234763.

[An24] I. Andrenacci, M. Lonardi, P. Ramantanis, E. Awwad, E. Irurozki, S. Clémençon,
and S. Almonacil, “A machine-learning-based technique to establish ASE or Kerr
impairment dominance in optical transmission,” accepted for publication at
JOCN, 2024.

[Bac20] J. Bäck et al., “Capex savings enabled by point-to-multipoint coherent
pluggable optics using digital subcarrier multiplexing in metro aggregation
networks,” in 2020 ECOC, (IEEE, 2020), pp. 1–4.

[Bar20] S. Barzegar, M. Ruiz and L. Velasco, “Autonomous Flow Routing for Near Real-
Time Quality of Service Assurance,” in IEEE Transactions on Network and
Service Management.

[Cas23] Castro, A. Napoli, M. Porrega, J. Back, A. Rashidinejad, M. Quagliotti, E. Riccardi,
D. Hillerkuss, A. Yekani, F. Masoud, A. Mathur, J. Pedro, B. Spinnler, S. Erkilinc,
A. Chase, T. A. Eriksson, and D. Welch, “Scalable filterless coherent point-to-
multipoint metro network architecture,” J. Opt. Commun. Netw. 15, B53–B66,
2023

[Che21] J. Chen et al., “DRL-QOR: Deep Reinforcement Learning-Based QoS/QoE-Aware
Adaptive Online Orchestration in NFV-Enabled Networks,” Trans. Netw. Service
Manag., vol. 18, no. 2, pp. 1758–1774, jun 2021.

[Cor05] G. Cormode and S. Muthukrishnan, “An improved data stream summary: the
count-min sketch and its applications,” Journal of Algorithms, vol. 55, no. 1, pp.
58–75, 2005. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0196677403001913

[Cug22] F. Cugini, D. Scano, A. Giorgetti, A. Sgambelluri, F. Paolucci, J. J. Vegas Olmos,
and P. Castoldi, “Applications of p4-based network programmability in optical
networks,” in 2022 Optical Fiber Communications Conference and Exhibition
(OFC), 2022, pp. 1–3.

[Cug23] F. Cugini, D. Scano, A. Giorgetti, A. Sgambelluri, L. D. Marinis, P. Castoldi, and F.
Paolucci, “Telemetry and ai-based security p4 applications for optical networks
(invited),” J. Opt. Commun. Netw., vol. 15, no. 1, pp. A1–A10, Jan 2023.
[Online]. Available: https://opg.optica.org/jocn/abstract.cfm?URI=jocn-15-1-
A1

[Fan99] W. Fang and L. Peterson, “Inter-as traffic patterns and their implications,” in
Seamless Interconnection for Universal Services. Global Telecommunications
Conference. GLOBECOM’99. (Cat. No.99CH37042), vol. 3, 1999, pp. 1859–1868
vol.3.

[Gall22] J. Gallego-Madrid, “Machine learning-based zero-touch network and service
management: a survey,” Digit. Commun. Networks 8, 105–123 (2022).

 D4.3 GA Number 101016663

111

[Gar20] A. L. Garcia Navarro, “Packet-Optical Latency-based RL,”
https://github.com/alexgaarciia/ PacketOpticalLatencyRL (2023).

[Her19] J. A. Hernandez, R. Sanchez, I. Martin, and D. Larrabeiti, “Meeting the traffic
requirements of residential users in the next decade with current ftth
standards: How much? how long?” IEEE Communications Magazine, vol. 57, no.
6, pp. 120–125, 2019.

[Her22] C. Hernández-Chulde, R. Casellas, R. Martínez, R. Vilalta and R. Muñoz,
"Evaluation of Deep Reinforcement Learning for Restoration in Optical
Networks," 2022 Optical Fiber Communications Conference and Exhibition
(OFC), San Diego, CA, USA, 2022, pp. 1-3.

[Her22b] C. Hernández-Chulde, R. Casellas, R. Martínez, R. Vilalta and R. Muñoz,
"Latency-Aware Routing and Spectrum Assignment with Deep Reinforcement
Learning," 2022 18th International Conference on the Design of Reliable
Communication Networks (DRCN), Vilanova i la Geltrú, Spain, 2022, pp. 1-4,
doi: 10.1109/DRCN53993.2022.9758014.

[Her23] C. Hernandez-Chulde, R. Casellas, R. Martinez, R. Vilalta and R. Munoz,
"Experimental evaluation of a latency-aware routing and spectrum assignment
mechanism based on deep reinforcement learning," in Journal of Optical
Communications and Networking, vol. 15, no. 11, pp. 925-937, November
2023, doi: 10.1364/JOCN.499343.

[Her23b] C. Hernández-Chulde, R. Casellas, R. Martínez, R. Vilalta and R. Muñoz, "DRL for
VNF placement in Inter-Data Center Elastic Optical Networks," 2023 Optical
Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA,
2023, pp. 1-3, doi: 10.1364/OFC.2023.Tu3D.7.

[Her23c] C. Hernández-Chulde, R. Casellas, R. Martínez, R. Vilalta and R. Muñoz, "VNF
Placement Over Autonomic Elastic Optical Network via Deep Reinforcement
Learning," ICC 2023 - IEEE International Conference on Communications, Rome,
Italy, 2023, pp. 422-427, doi: 10.1109/ICC45041.2023.10278838.

[Hos23] M. M. Hosseini, J. Pedro, A. Napoli, N. Costa, J. E. Prilepsky, and S. K. Turitsyn,
“Multi-period planning in metro-aggregation networks exploiting point-to-
multipoint coherent transceivers,” J. Opt. Commun. Netw. 15, 155–162 (2023).

[Iac22] O. Iacoboaiea, J. Krolikowski, Z. Ben Houidi, and D. Rossi, ”From Design to
Deployment of Zero-touch Deep Reinforcement Learning WLANs,”
arXiv:2207.06172, 2022.

[Jan19] B. Jang, M. Kim, G. Harerimana and J. W. Kim, ”Q-Learning Algorithms: A
Comprehensive Classification and Applications,” in IEEE Access, vol. 7, pp.
133653-133667, 2019, doi: 10.1109/ACCESS.2019.2941229.

[Jur21] P. Jurkiewicz, G. Rzym, and P. Boryło, “Flow length and size distributions in
campus internet traffic,” Computer Communications, vol. 167, pp. 15–30,
2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0140366420320223

[Kum22] H. S. Kumhar and V. Kukshal, “A review on reinforcement deep learning in
robotics,” 2022 Interdisciplinary Research in Technology and Management
(IRTM), Kolkata, India, 2022, pp. 1-8, doi: 10.1109/IRTM54583.2022.9791615.

[Lo21] M. Lonardi, P. Serena, P. Ramantanis, N. Rossi, and S. Musetti, “Kerr
Nonlinearity Dominance Diagnostic for Polarization-Dependent Loss Impaired
Optical Transmissions,” in 2021 European Conference on Optical
Communication (ECOC), 2021-09-18, pp. 1–4. doi:
10.1109/ECOC52684.2021.9605832.

 D4.3 GA Number 101016663

112

[Mam19] Z. Mammeri “Reinforcement Learning Based Routing in Networks: Review and
Classification of Approaches,” in IEEE Access, vol. 7, pp. 55916-55950, 2019.

[Mar21] R. Martínez et al., “Autonomous SDN-based global concurrent restoration for
high-capacity optical metro networks,” in 2021 Optical Fiber Communications
Conference and Exhibition (OFC), (2021), pp. 1–3.

[Mol11] S. Molnar and Z. Moczar, “Three-dimensional characterization of internet
flows,” in 2011 IEEE International Conference on Communications (ICC), 2011,
pp. 1–6.

[Mom22] J. Momo Ziazet, B. Jaumard, “Deep Reinforcement Learning for Network
Provisioning in Elastic Optical Networks,” In Proc. ICC 2022.

[Mus19] F. Musumeci et al., “A tutorial on machine learning for failure management in
optical networks,” J. Light. Technol. 37, 4125–4139 (2019).

[Nae20] M. Naeem, S. Rizvi, and A. Coronato, “A Gentle Introduction to Reinforcement
Learning and its Application in Different Fields,” IEEE Access, vol. 8, pp. 209320-
209344, Jan. 2020.

[Nam22] H. Namkung, D. Kim, V. Sekar, and P. Steenkiste, “Sketchlib: Enabling efficient
sketch-based monitoring on programmable switches,” in USENIX NSDI 2022.
USENIX, April 2022. [Online]. Available: https://www.microsoft.com/en-
us/research/publication/sketchlib-enabling-efficient-sketch-based-
monitoring-on-programmable-switches/

[Nap21] A. Napoli et al., “Live network demonstration of point-to-multipoint coherent
transmission for 5G mobile transport over existing fiber plant,” in 2021 ECOC,
(2021), pp. 1–4.

[Nap22] A. Napoli, Z. Stevkovski, J. D. Jiménez, E. J. Zuleta, J. Bäck, J. Pedro, J. Rodriguez,
R. Diaz, J. Carrallo, A. Mathur et al., “Enabling router bypass and saving cost
using point-to-multipoint transceivers for traffic aggregation,” in Optical Fiber
Communication Conference, (Optica Publishing Group, 2022), pp. W3F–5.

[Nat20] C. Natalino and P. Monti, “The Optical RL-Gym: An open-source toolkit for
applying reinforcement learning in optical networks,” in Proc. ICTON 2020.

[Pav22] P. Pavon-Marino et al., “On the benefits of point-to-multipoint coherent optics
for multilayer capacity planning in ring networks with varying traffic profiles,”
J. Opt. Commun. Netw. 14, B30–B44 (2022).

[POI07] Y. Pointurier, F. Heidari, “Reinforcement learning based routing in all-optical
networks,” In Proc. BROADNETS 2007.

[Se20] P. Serena, C. Lasagni, and A. Bononi, “The Enhanced Gaussian Noise Model
Extended to Polarization-Dependent Loss,” Journal of Lightwave Technology,
vol. 38, no. 20, pp. 5685–5694, 2020-10, doi: 10.1109/JLT.2020.3001722.

[Sga23] Andrea Sgambelluri, Davide Scano, Roberto Morro, Filippo Cugini, Jordi Ortiz,
José Manuel Martinez, Emilio Riccardi, Piero Castoldi, Pablo Pavon, and Alessio
Giorgetti “Failure recovery in the MANTRA architecture with an IPoWDM SONiC
node and 400ZR/ZR+ pluggables”, Journal of Optical Communications and
Networking (JOCN), Vol. 16, Issue 5, pp. B26-B34, (2024)

[Sko21] Skorin-Kapov et al., “Point-to-multipoint coherent optics for re-thinking the
optical transport: case study in 5G optical metro networks,” in 2021 ONDM,
(IEEE, 2021), pp. 1–4.

[Swe22] N. L. Swenson, “Open XR Concept Introductory White Paper,” Tech. rep., Open
XR Forum (2022).

[Tac23] T. Tachibana et al, “Metropolitan Area Network Model Design Using Regional

 D4.3 GA Number 101016663

113

Railways Information for Beyond 5G Research” in IEICE Trans. on Comm., vol
E106.B, no. 4, pp. 296-306, 2023.

[Vil20] R. Vilalta et al., “Experimental validation of resource allocation in transport
network slicing using the ADRENALINE testbed,” Photonic Netw. Commun., vol.
40, no. 2, pp. 82–93, aug 2020.

[Wel21] D. Welch et al., “Point-to-multipoint optical networks using coherent digital
subcarriers,” J. Light. Technol. 39, 5232–5247 (2021).

[Wel23] D. Welch, A. Napoli, J. Bäck, S. Buggaveeti, C. Castro, A. Chase, X. Chen, V.
Dominic, T. Duthel, T. A. Eriksson, S. Erkilinç, P. Evans, C. R. S. Fludger, B. Foo,
T. Frost, P. Gavrilovic, S. J. Hand, A. Kakkar, A. Kumpera, V. Lal, R. Maher, F.
Marques, F. Masoud, A. Mathur, R. Milano, M. I. Olmedo, M. Olson, D. Pavinski,
J. Pedro, A. Rashidinejad, P. Samra, W. Sande, A. Somani, H. Sun, N. Swenson,
H.-S. Tsai, A. Yekani, J. Zhang, and M. Ziari, “Digital subcarrier multiplexing:
Enabling software-configurable optical networks,” J. Light. Technol. 41, 1175–
1191 (2023)

[Xu16] Xu et al., “Understanding mobile traffic patterns of large-scale cellular towers
in urban environment,” IEEE/ACM Transactions on networking 25, 1147–1161
(2016)

