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EXECUTIVE SUMMARY 

Building a framework for an Artificial Intelligence (AI) / Machine Learning (ML) -assisted 

autonomous and dynamic network supporting real-time operations and Zero-Touch Networking 

(ZTN) is among the objectives of B5G-OPEN. Autonomous operation is implemented at various 

levels, from device to network, which requires the development of a distributed knowledge and 

decision-making engine that massively relies on the use of monitoring data and on the 

application of AI/ML 

This deliverable shows a clear path towards autonomous networking, which includes the 

following ingredients: 

1 Deep understanding of the network traffic, not only in terms of volume, but also its 

dynamicity, as well as on the requirements of services, specifically in terms of bandwidth 

and latency. 

2 Planning and dimensioning of the network infrastructure, considering the latest 

advancements on optical technologies, like Digital Subcarrier Multiplexing (DSCM) and 

Point-To-Multipoint (P2MP) connectivity. 

3 Predictive maintenance, as a management tool to reduce overprovisioning and save 

operational expenditures. 

4 The development of digital twining solutions, i.e., digital representations of the optical 

network. 

5 The extensive use of ML, specifically Reinforcement Learning (RL), which is one of the main 

techniques that enable truly autonomous ZTN. 

6 Decentralized decision making precisely based on the deployment of RL that use network 

telemetry for achieving the defined goals. 
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1 INTRODUCTION 

Building a framework for an Artificial Intelligence (AI) / Machine Learning (ML) -assisted 

autonomous and dynamic network supporting real-time operations and Zero-Touch Networking 

(ZTN) is among the objectives of B5G-OPEN. Autonomous operation is implemented at various 

levels, from device to network, which requires the development of a distributed knowledge and 

decision-making engine that massively relies on the use of monitoring data. 

The deliverable shows different approaches to reduce operation overheads by: (i) 

overprovisioning minimization though planning and orchestration that considers multi-layer 

complexity; (ii) predictive failure management; and (iii) simplification of network and service 

operations, through digital twining solutions and near real-time control of network resources. 

Because several approaches presented in this deliverable are based on Reinforcement Learning 

(RL), Section 2 first provides some background on the topic. 

The rest of the deliverable is organized into four main sections: 

• Section 3 focuses on network planning and orchestration, and presents various key 

mechanisms and approaches aimed at planning the network and enabling autonomous 

operations through orchestration functions. Network planning is the most classical 

approach used by network operators to achieve cost savings in deploying network 

infrastructure. This section explores different approaches for that objective, but first it 

focuses on understanding traffic patterns, including daily fluctuations and peak traffic 

periods, along with expected requirements, as such information serves as input for 

dimensioning the network infrastructure. The first study specifically focuses on metro 

networks utilizing Point-To-Multipoint (P2MP) connectivity services based on Digital 

Subcarrier Multiplexing (DSCM). In the provisioning connectivity on top of Elastic Optical 

Networks (EON), a crucial challenge is the Routing and Spectrum Assignment (RSA) 

problem that must incorporate QoS constraints of the services, such as maximum 

tolerated latency and guaranteed bandwidth. Approaches based on deep reinforcement 

learning (DRL) demonstrate their good performance. Finally in this section, the 

integration of computing and networking resources is also considered, as it is pivotal for 

the efficient deployment of network services that meet the diversified requirements of 

various vertical industries (e.g., Industry 4.0, automotive). The Virtual Network 

Functions (VNF) placement and the establishment of lightpaths is faced using a DRL 

approach. 

• Section 4 moves to failure management on the optical layer and elaborates on our 

proposal (named MESARTHIM) for soft-failure detection, identification, localization and 

severity estimation. The methodology makes use of a network Digital Twin (DT) that 

helps in the process, and it shows remarkable anticipation in failure detection and 

localization by analyzing the estimation of the value of the modelling parameters of the 

devices. Next, failure recovery and restoration are visited, where evaluation of a DRL-

based agent specifically designed for the autonomous restoration of disrupted 

lightpaths following an optical link failure is presented. Finally, the practical application 

of failure recovery is shown using the MANTRA architecture defined by the Telecom 

Infra Project (TIP). The architecture includes a hierarchical control plane with the B5G-

OPEN parent controller on top of packet and optical Software-Defined Networking 

(SDN) controllers. Workflows for activating connectivity services as well as for failure 
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recovery are introduced and experimental results with real traffic show reduced 

recovery times.  

• In the view of the benefits of using digital twining (DT) solutions for failure management, 

Section 5 presents the development of a DT for the optical time domain. The solution, 

named OCATA, based on concatenating Deep Neural Network (DNN) models suited for 

the specific lightpath under analysis. The models are designed to run at the receiver (Rx) 

site, and continuously analyze lightpath’s metrics to compress monitored constellation 

samples and detect potential anomalies. 

• Section 6 concentrates on the near real-time control. First, a solution for optical power 

optimization with low complexity is presented aimed at refining the knowledge of the 

network physical parameters. Next, at the packet layer, solutions for the detection of 

large flows based on hash techniques is shown in P4 scenarios aimed at performing 

specific operations on those flows at the data plane. Next, solutions based on DRL are 

presented for the control of the capacity resources in multilayer packet over optical 

scenarios. An agent running on top of the network nodes makes autonomous decisions 

near real-time aimed at minimizing the capacity allocated at the optical layer for a given 

packet flow. This approach consumes local packet telemetry and makes local decisions. 

The final work presented in this section goes much further in the decentralization of the 

control for near real-operation, and presents an approach based on multi-agent systems 

(MAS), where agents coordinate among them for the control of optical P2MP 

connectivity based on DSCM. 

Finally, Section 7 draws the main conclusions of this deliverable. 
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2 BACKGROUND ON REINFORCEMENT LEARNING  

In general, Reinforcement Learning (RL) is a type of AI/ML strategy in which an agent learns to 

behave in an environment by trial and error, that is, by making decisions and receiving positive 

rewards (or penalties as negative rewards). The agent is rewarded for taking actions that lead to 

desired outcomes and penalized when undesired outcomes occur. Over time, the agent learns 

to take the best actions in each situation that maximize its rewards (or minimize penalties) 

[JAN19, NAE20]. RL is effective for a variety of tasks in optical networks, including resource 

allocation (wavelengths and bandwidth), traffic engineering of flows to minimize congestion and 

resiliency against failures [POI07, MOM22, NAT20]. 

The formulation of RL problems require to define:  

• A set of states S which are representations of the environment at a given point in time. 

It can be anything from a single number to a complex data structure.  

• A set of Actions A that can be taken by the agent at a given state s from S. 

• Rewards which are feedback signals that the agent receives from the environment after 
taking an action in a given state. Rewards can be positive or negative.  

• Discounted returns: The discounted return of a state is the sum of all the rewards that 

the agent expects to receive in the future, discounted by a factor of  (gamma). This 
value is a number between 0 and 1 that controls how much the agent values future 
rewards. A high gamma value means that the agent values future rewards more. 

• Finally, the policy  (pi) which maps states to actions.  

The goal of RL is to find a policy  that maximizes the agent's expected discounted return in the 

long term. The agent can do this by trial and error. It tries different actions at different states 

and observes the received rewards. Over time, the agent learns to take those actions that lead 

to higher expected discounted returns. There are many libraries with different RL algorithms 

already coded, both in R and Python [NAT20]. Examples, for open-source programming language 

R, include contextual, ReinforcementLearning and MDPtoolbox. 

The simplest RL is Q-learning, which is a model-free discrete RL method that is able to learn the 

optimal policy represented by a Q-table of pairs <s, a>, each containing a q value. Being at state 

s, an action a is taken—either the one corresponding to the highest q value, or chosen randomly. 

After the action is implemented, it is evaluated by receiving the new state, s’, and the gained 

reward r from the environment. The agent then updates the corresponding q value in the Q-

table. Q-learning works efficiently for problems where both states and actions are discrete and 

finite. However, it suffers from two main problems: it introduces overestimation, which leads to 

suboptimal policies, and the Q-table grows with the number of states. It may be appropriate to 

provide some more information on what is behind the Q-learning algorithm. It updates its value 

function based on an equation that considers the immediate reward received for an action, plus 

the maximum future rewards. The Q-value of a state-action pair (s, a) is updated as follows: 

Q(s, a)  <-- Q(s, a) +  [ R(s, a) +   maxa' Q(s', a') - Q(s, a) ] (1) 

where: 

• Q(s, a) denotes the current estimate of the value of action a in state s. 

•  (alpha) is the learning rate, determining the impact of new information on the existing 
Q-value. 

• R(s, a) is the immediate reward received after taking action a in state s. 

•  is the discount factor, which balances the importance of immediate and future 
rewards. 
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• maxa' Q(s', a') represents the maximum predicted reward achievable in the next state s', 
considering all possible actions a'. 

Q-learning excels in scenarios where the agent must learn the value of actions in different states 

without requiring a model of the environment. This characteristic makes it particularly adept for 

problems where the environment's dynamics are complex or unknown. Q-learning's 

straightforwardness and efficiency in learning optimal policies solely from interactions with the 

environment render it a versatile tool for a wide range of applications [NAE20]. 

Deep Q-learning (DQN) substitutes the Q-table by a feed-forward DNN that receives a 

continuous representation of the state and returns the expected q value for each discrete action. 

Because the DNN tends to make learning unstable, countermeasures need to be taken. The most 

extended measure is to keep a replay buffer storing the last experiences, i.e., tuple <s, s’, r, a> 

that is used to retrain the DNN. In addition, double DQN uses two different DNNs (learning and 

target) to avoid overestimation, which happens when a non-optimal action is quickly biased (due 

to noise or exploration) with a high q value that makes it preferably selected. Thus, the learning 

model is updated using the q values retrieved from the target DNN, which is just a simple copy 

of the learning model that is periodically updated. Finally, dueling double DQN (named D3QN in 

this paper) uses two different estimators to compute the q value of a pair <s, a>: (i) the value 

estimator, which can be intuitively seen as the average q value of any action taken at state s; 

and (ii) the advantage estimator, which is the specific state action-dependent component. The 

sum of both value and advantage components returns expected q values. DRL has demonstrated 

remarkable success in various domains, from mastering complex games to autonomous vehicle 

navigation and robotics, showcasing its capability to process and act upon large-scale and 

complex inputs effectively [AIS23, KUM22]. 

DQN-based methods assume a finite discrete action space. If continuous state and action spaces 

are required, other approaches such as Actor–Critic methods can be used. The main idea behind 

Actor–Critic methods is that two different types of models are trained separately: (i) actors, who 

are in charge of computing actions based on states, and (ii) critics, who are in charge of 

evaluating the actions taken by actors, i.e., to compute q values. Both actor and critic models 

can be implemented by means of DNNs. Among all different Actor–Critic methods, the TD3 

method considers one single actor and two different critic models, where the minimum value 

from the two critics is used to learn, aiming at reducing overestimation. 
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3 NETWORK PLANNING AND ORCHESTRATION 

This section delves into various key mechanisms and approaches aimed at optimizing network 

planning and enabling autonomous operations through orchestration functions. At a macro 

level, network planning endeavors to achieve cost savings in deploying network infrastructure, 

particularly in terms of devices like optical transceivers. Central to this objective is 

understanding anticipated traffic patterns, including daily fluctuations and peak traffic periods, 

along with expected requirements. This information serves as input, leveraging techniques such 

as ML, to effectively meet traffic demands while appropriately sizing the devices and elements 

constituting the network infrastructure. The study specifically focuses on metro networks 

utilizing P2MP connectivity services based on DSCM, capitalizing on its inherent high-capacity 

and flexibility advantages.  

In the (on-line) network operations when provisioning/re-optimizing/restoring connectivity 

services, the orchestration of different underlying technologies (packet and optical) relies on the 

autonomous functions. To this end, it is essential supporting well-defined closed-loops functions 

(observation-decision-action) which can be realized through constructing digital network 

representations, i.e., Digital Twin (DT). In a nutshell, the relevant network and device 

information is constantly represented and retrieved (e.g., using dedicated telemetry and 

monitoring platform). The collected data can be conveniently analyzed and processed, and 

eventually digested by e.g., offline/dynamic trained AI/ML models. In this regard, diverse 

supervised, unsupervised and reinforcement learning (combined with Deep Learning) can be 

adopted depending on the targeted network operation. Applied AI/ML algorithms and models 

can support a broad range of autonomous decisions, such as detecting performance 

degradations (e.g., optical power anomalies), better fulfilling stringent requirements (e.g., 

latency, placement of compute network functions) of arriving network services, assisting the 

SDN controller to re-optimize the allocation of connections to meet Quality of Transmission 

(QoT) needs or attain enhanced resource utilization, etc. The following details the set of 

conducted network orchestration studies in B5G-OPEN to highlight the appealing achievements 

when orchestrating network services in an autonomous way.  

3.1 PLANNING OF P2MP CONNECTIVITY 
Telecommunication operators seek technologies to build their next-generation optical networks 

focusing on multiple dimensions, namely resiliency, flexibility, programmability and also 

scalability and cost-effectiveness. In this sense, P2MP coherent pluggable optics featuring digital 

subcarrier multiplexing (DSCM) [Wel21] can potentially provide many of such key requirements, 

in particular, high-capacity and flexibility. Such P2MP network architectures allow to reduce the 

number of transceivers and intermediate aggregation nodes leading to high-bandwidth and low-

latency configurations in a cost-effective way [Bac20,Hos23,Pav22,Sko21,Nap21]. Recently, a 

new Multi-Source Agreement (MSA) working group called the Open XR Forum [Swe22] has 

emerged with the goal of fostering collaboration between industry and academia in the 

development of P2MP coherent pluggable transceiver technology. The forum aims to develop 

products and services, standardize networking interfaces, and ensure interoperability among 

vendors. Following [Swe22], the Open XR system concept is a new optical network architecture 

that allows a single central node to be interconnected with multiple leaf nodes in a P2MP tree 

topology, whereas passive devices (splitters and combiners) are used in between. Thanks to 

DSCM, different bandwidth settings can be configured between the central node and each leaf 

of the tree. This can simplify access-metro topologies in metropolitan area networks (MANs) 
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and has direct applicability in hub-and-spoke traffic scenarios, which are common in MANs and 

5G/6G deployments.  

In particular, thanks to DSCM, the total bandwidth in the tree may be split into m Nyquist digital 

subcarriers (SC), typically m = 16, each one operating at 25 Gb/s, for a total bandwidth in the 

tree of 400 Gb/s, with m × 25 Gb/s (using 16QAM, 3.7 GBaud and dual polarization). In principle, 

each individual sub-carrier can be treated independently of all others, including modulation, 

management, and aggregation, and thus can be (software-) routed to different destinations, 

allowing for a greater degree of flexibility with respect to classical fixed point-to-point (P2P) 

pluggable transceivers [Nap22,Wel23]. Thus, if properly designed and planned, such DSCM-

based P2MP trees can offer an opportunity to design cost-efficient and flexible network 

topologies by dynamically assigning sub-carriers to individual leaf nodes as needed. In this study, 

we present a variation of hierarchical clustering algorithms for designing P2MP trees that take 

advantage of the uncorrelated traffic profiles of end (leaf) nodes. This can lead to significant cost 

savings in network deployments. The proposed algorithm uses daily traffic patterns to select and 

group end nodes that can be most efficiently included under the same P2MP tree. This 

maximizes cost savings in terms of the number of transceivers. The algorithm can reduce the 

number of trees by up to 18%, which translates to a potential of 40 − 50% total capital 

expenditure (CAPEX) savings when compared to fixed P2P designs.  

3.1.1 Example of a typical MAN scenario 

Figure 1 shows an example of a hierarchical MAN topology with three access nodes (ACO1 to 

ACO3) and two metro central offices (MCO1 and MCO2). The MAN provides services to a 

heterogeneous number of end nodes, including residential (L4), business (L3), industrial zones 

(L8), sports zones (L6), and recreation and entertainment areas (e.g., L1 and L2). These areas use 

different technologies, such as active antenna processing units (AAUs), optical line terminals 

(OLTs), and digital subscriber line access multiplexers (DSLAMs). The traffic pattern within the 

network is dynamic and constantly varies across each area. This scenario is very suitable for a 

P2MP architecture where the aggregated traffic at the ACOs (equipped with 100G low-rate 

transceivers) is then forwarded to the MCOs (equipped with 400G high-rate P2MP transceivers), 

as in [Cas23]. 

The dynamic management of sub-carriers in the P2MP tree can be autonomously handled by 

either a central SDN controller or agent controllers. These controllers leverage data analytics of 

traffic patterns, supported by online traffic predictors located at the central controller. As a 

result, bandwidth-on-demand allocation (BoDA) can be efficiently provided within a reasonable 

timeframe. Each sub-carrier can deliver a throughput of 25 Gbps (25G), with a maximum 

transparent reach distance of 500 km [Hos22]. Additionally, the SDN controller is assumed to be 

capable of activating and deactivating contiguous subcarriers (SCs) in the 400G and 100G 

modules based on the BoDA strategy for both the downlink and uplink directions. 
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Figure 1: Example of a hierarchical MAN with P2MP trees. 

3.1.2 Clustering example 

Following Figure 1, we consider a hypothetical traffic pattern for all the leaf nodes L1-L8, which 

are situated within a specific area. For example, L8 is a leaf node in an industrial area with a 

minimum traffic of 175 Gbps (7 x 25 Gbps) and a peak traffic of 275 Gbps (11 x 25 Gbps) over a 

given time period. For simplicity, we assume that the upstream and downstream traffic are 

symmetrical. We further assume that the SDN controller is aware of the traffic pattern and have 

clustered the leaf nodes into three clusters. The AI/ML algorithm presented in the next section 

ensures that the leaf nodes are clustered together in a way that their peak traffic times are 

uncorrelated. This ensures that the aggregated traffic on any given link never exceeds 400 Gbps 

at any time of the day. 

For example, in Cluster 1, which comprises leaf nodes 1, 5, and 8, the cumulative throughput 

could be as high as 500 Gbps if the peak traffic times of all three nodes coincide. However, this 

never happens because the leaf nodes are located in different heterogeneous areas, such as 

recreation and entertainment, business and residential, and industrial. As a result, the maximum 

aggregated traffic measured is 375 Gbps. Similarly, in the example, the maximum measured 

bitrates are 350 Gbps and 400 Gbps for Clusters 2 and 3, respectively, which are both less than 

the sum of the peak rates.  

The next section provides an overview of AI/ML clustering techniques and how they can be 

adapted to find the most appropriate sets of clusters with uncorrelated traffic patterns. This can 

help to reduce the number of P2MP trees necessary in a hierarchical MAN. 

3.1.3 On clustering leaf nodes with uncorrelated traffic profiles 

We start from the hypothesis that leaf nodes exhibit different daily traffic profiles, and this can 

be leveraged by the inherent flexibility of DSCM transceivers to build P2MP trees in a cost-
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efficient manner. Essentially, the 16 x 25Gb/s channels can be assigned to clients in a dynamic 

fashion moving channels from one client to another as needed, according to dynamic traffic 

demands, thus allowing to provide extra resources to specific clients during his/her peak hour, 

and reassigning those resources to other clients on different times of the day, when their peak 

hours occur. A simplified version of this idea is shown in Figure 2, where three clients are 

assigned a different number of subcarriers in the morning and at night. 

 

Figure 2: Dynamic allocation of subcarriers at different times of the day (left) in the morning 

(right) at night. 

Clustering is a well-known unsupervised ML method for grouping elements based on a similarity 

or distance metric. It is used to reveal subgroups of similar structure within a set of unlabeled 

data, where each individual cluster has some homogeneity compared to the rest of the data. 

Essentially, clustering algorithms aim at partitioning data into groups such that the elements 

within the group are highly related or show minimal distance within the group, while the 

distance between groups is maximized.  

Depending on the dataset and the application considered, the definition of a given distance is 

critical for the algorithm to partition the data. The most common distance metrics used in 

clustering techniques include cosine similarity, Euclidean, and Hamming distance, but others can 

be defined for specific uses. Regarding the algorithms themselves, there are several different 

clustering techniques; the most popular ones are hierarchical clustering and K-means, but there 

are others more sophisticated like partitioning Clustering, density-based clustering, etc. 

Several measurement-based research studies conducted in the past have identified multiple 

aspects in traffic patterns. Some of them observed different behaviors between weekdays and 

weekends (see, e.g., [Xu16]), or the peak and valley times of the day. Typically, aggregated traffic 

profiles reveal the peak hour in the morning, a valley around lunchtime, and another peak after 

lunch; the exact time at which the peaks and valleys occur depends on the habits of the 

countries. In all cases, the network is usually quiet at night.  

In [Xu16], the authors deeply studied the traffic patterns observed in 9,600 cell towers in the 

city of Shanghai, China. Among other interesting observations, they identified four different 

patterns of use, namely Residential, Office, Transport, and Comprehensive profiles, the latter 

being related to shopping centers and other leisure areas. The profiles account for 16%, 25%, 

32% and 27% for Residential, Office, Transport and Comprehensive profiles respectively. These 

hourly traffic patterns are reproduced in Figure 3 as 1 x 24 row-vectors, representing different 

hours of the day.  
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Figure 3. Normalized traffic profiles: Residential, Office, Transport and Comprehensive. 

As observed, different traffic profiles exhibit peak and valley times at different times of the day. 

For example, the residential profile has its peak time between 8 p.m. and 23 p.m. while the office 

traffic profile shows the peak between 9 a.m. and 4 p.m. Interestingly, the transport traffic 

pattern has two peaks, one before office hours plus another one after work.   

As shown, the four profiles have different peaks and valleys, and combining them wisely (using 

clustering) will result in a reduction of P2MP trees and equipment. In general, selecting the 

optimal groups/clusters whose sum is below 16 x 25G SCs (for 400 Gb/s P2MP tree 

configurations) can be thought of as an extension of the classical bin-packing/Knapsack problem, 

which is known to be NP-complete (i.e., NP stands for nondeterministic polynomial-time 

complete) and very hard to solve for computers as the problem grows in size. Instead, the next 

subsections define two clustering techniques to find groups of uncorrelated traffic profiles while 

satisfying the requirement that the number of SCs demanded is always below the maximum 

m=16 throughout the day.  

3.1.4 CA1: Clustering of uncorrelated traffic sources 

In Clustering Algorithm no. 1 (CA1), we are mostly interested in designing a clustering-based 

algorithm that takes into account only daily traffic profiles that benefit from the dynamic 

behavior of coherent P2MP pluggable transceivers. In this sense, the correlation between daily 

profile traffic patterns can be used as a distance metric, where two nodes with uncorrelated 

traffic patterns will be considered of short distances, while nodes with correlated peak times 

shall be avoided or penalized with a high distance value. To this end, let dtraff(vi,vj) be the distance 

between the leaf nodes vi and vj with traffic patterns ti and tj as: 

𝑑𝑡𝑟𝑎𝑓𝑓(𝑣𝑖 , 𝑣𝑗) =
1 + 𝑐𝑜𝑟𝑟(𝑡𝑖 , 𝑡𝑗)

2
 (2) 

Essentially, the minimum distance between nodes nodes vi and vj (null distance) occurs when 

their traffic patterns are totally uncorrelated (i.e. correlation = -1) and the maximum distance 

(distance = 1) occurs when their traffic profiles are totally correlated (correlation = 1). Here, the 

traffic pattern for a node is a 1 x 24 row vector whose elements represent the hourly traffic 

volume offered throughout the day.  
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3.1.5 CA2: Clustering of uncorrelated traffic sources and short geographical distance 

In a second version, the clustering algorithm (CA2) must find groups of nodes that favor 

uncorrelated traffic patterns, but the nodes participating in the same group must be as close as 

possible in terms of geographical distance. To take into account both aspects, we define a new 

distance metric dtot(vi,vj): 

𝑑𝑡𝑜𝑡(𝑣𝑖 , 𝑣𝑗) = 𝛼 𝑑𝑡𝑜𝑡(𝑣𝑖 , 𝑣𝑗) + (1 − 𝛼)𝑑𝑔𝑒𝑜𝑚(𝑣𝑖 , 𝑣𝑗) (3) 

 

Here, dtot(vi,vj) takes into account both distance metrics: traffic-based and geographical distance. 

The latter one is computed based on the GPS coordinates of the nodes, normalized among all 

nodes, that is, the two furthest apart nodes have a geographical distance equal to one. With this 

approach, α is a weighting value (α in [0,1]) that allows the network planner to give more 

importance to traffic (α close to 1) or to the location (α close to 0) of the nodes participating in 

each P2MP tree. In scenarios where the network operator has some freedom to interconnect 

distant-apart nodes, then α can be closer to 1 allowing the clustering algorithm to better exploit 

uncorrelated traffic patterns among the total number of nodes. 

3.1.6 Simulations and results 

As shown in Figure 3, different traffic profiles have different busy moments and quiet hours; in 

general, the peak-to-average values range between 2 and 3. Following this behavior, we have 

simulated 1,000 nodes with random traffic profiles and uniformly distributed random peak 

values U(10, 100) Gb/s plus a percentage of random traffic values (10% and 30% of peak traffic) 

to create a diverse dataset with different traffic profiles and demand volumes. Figure 4 shows 

an example of the resulting traffic offered by four simulated nodes (in Gb/s) at different times 

of the day for both 10% and 30% traffic variability with respect to the normalized profile. As 

shown, the 30% case shows more traffic fluctuations than the 10% case and should be 

considered a worst-case scenario of nodes with high traffic fluctuations. 

 

Figure 4. Daily traffic profiles with low traffic variability (10%) and high-traffic variability (30%). 

The scenarios, algorithms and simulations have been programmed using R.  

3.1.7 Simulation #1: without geographical coordinates 

In this first simulation, we find the best combination of nodes that minimize the number of P2MP 

trees, taking into account only the traffic profile (i.e., 𝛼 = 1) regardless of their location. The 

1,000 simulated nodes are grouped into 171 clusters (i.e., P2MP trees), that is, an average of 

5.85 nodes per cluster. 
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Figure 5. Daily traffic profiles for clusters/trees no. 1, 2, 3, and 4 for simulation case 1. 

Figure 5 shows four different clusters/trees. Essentially, the blue lines represent the traffic of 

each leaf node in the P2MP tree (not in Gb/s but in the number of subcarriers of 25G) at different 

times of the day; the red line is the sum or aggregated number of subcarriers for all nodes in the 

same P2MP tree arriving at the hub node. As shown, the uncorrelated nature of individual flows 

is leveraged to reach the maximum number of SCs at different times of the day. As shown, the 

summation of the number of subcarriers of individual leaf nodes does not exceed the limit of 16 

subcarriers offered by the hub node at any time of the day. The first cluster depicted in Figure 5 

comprises seven P2MP leaf nodes of the simulation. The second, third, and fourth clusters 

include 7, 5, and 4 leaf nodes respectively. Remark that the figure shows examples of only 4 out 

of 171 clusters or trees decided by the clustering algorithm for the 1,000 nodes. 

Table 1 further details the number of SCs required by each P2MP leaf node in cluster/tree no. 2 

at different times of the day Figure 5 (top) and the total sum of SCs needed to satisfy all traffic 

demands. As shown, the demands for 25G SCs vary significantly from one hour to the next, 

highlighting the benefits of having dynamic bandwidth allocation of 25G modules over different 

times. For example, in this cluster, at hour h12 (i.e., 12 noon), node 3 needs to jump from 3 SCs 

up to 5, while node 1 can reduce from 4 to 3. On the other hand, node 7 typically needs only 1 

SC except at some hours of the day when it requires 2 SCs, but these are valley hours for other 

nodes. In all cases, the total number of SC never exceeds m=16. 

Table 1 shows the number of P2MP trees created by CA1 for different values of the ranges of 

peak traffic and the variability of the traffic with respect to the peak. The comparison is against 

a largest-fit heuristic assignment algorithm which assigns nodes to clusters by sorting them from 

largest to smallest demands and filling the tree until the maximum number of SCs is reached. As 
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shown, our clustering algorithm CA1 always creates a number of P2MP trees that is considerably 

smaller than such a largest-fit heuristic, with tree savings up to 18% in many cases.  

Table 1 Simulations CA1 in 1,000 node networks 

Peak (Gb/s) Variability CA1 Largest-fit Savings 

U(10,100) 30% of peak 172 trees 183 trees 6.0% 

U(50,100) 30% of peak 220 trees 250 trees 12.0% 

U(10,150) 30% of peak 257 trees 278 trees 7.6% 

U(10,100) 80% of peak 250 trees 278 trees 5.8% 

U(50,100) 80% of peak 333 trees 397 trees 16.1% 

U(10,150) 80% of peak 440 trees 520 trees 18.2% 

 

As shown in Table 1, when traffic variability is very high, the number of P2MP trees required is 

between 250 and 440, more than double than in case with less variability (172 to 257 trees). 

Still, the largest savings in the number of trees is achieved when traffic demands are highly 

variable (80% variability in the table) since the clustering algorithm outperforms at finding 

uncorrelated traffic profiles and better squeezes the dynamicity of P2MP technology. 

3.1.8 Simulation #2: with GPS coordinates 

In this second scenario, we introduce GPS coordinates to the nodes, forcing the clustering 

algorithm to also take into account the location of the nodes to find a balance between the 

nodes with uncorrelated traffic patterns and their geographical distance. The peak traffic for 

each node is randomly selected from a uniform distribution U(10,100) Gb/s and the variability 

is 80% of the peak in all cases. In this case, networks with 1,000 nodes are simulated, again 

compared with the largest-fit heuristic explained in the previous section.  

The nodes are randomly located in a grid with different sizes, as specified in Table 2. This table 

also shows the number of trees obtained by CA2 and the savings with respect to the largest-fit 

heuristic for different values of α. The α parameter has a critical impact on savings since, as 

observed, it allows a maximum of about 5.6% savings regarding the number of P2MP trees down 

to 0% savings if the clustering algorithm weights zero (i.e., uncorrelated traffic patterns is not 

relevant) and only the minimum geographical distance is considered.  

Table 2 Simulations CA2 in 1,000 node networks 

Peak (Gb/s) Variability α CA2 Largest-fit Savings 

U(10,100) 80% of peak 1 162 trees 172 trees 5.8% 

U(10,100) 80% of peak 0.75 163 trees 173 trees 5.2% 

U(10,100) 80% of peak 0.5 164 trees 172 trees 4.6% 

U(10,100) 80% of peak 0.25 169 trees 172 trees 1.7% 

U(10,100) 80% of peak 0 172 trees 172 trees 0% 

3.1.9 CAPEX savings: P2MP trees vs fixed P2P transceivers 

Next, we compare the P2MP architecture with CA2 dimensioning against a hypothetical 

dimensioning employing P2P pairs of transceivers interconnecting access nodes directly to 

aggregation nodes. In such a fixed P2P setting, no dynamic allocation/sharing of bandwidth can 

be leveraged, and each P2P link must be dimensioned to the peak hour.  

Following the cost model of [Hos22], we consider the following normalized cost units (CU) for 

each P2P transceiver: C10G=1 CU, C100G=5 CU, C200G=8 CU, C400G=12 CU for 10G, 100G, 200G and 

400G fixed P2P transceivers respectively. For the cost of P2MP trees, we assume that high 
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bitrate 400G P2MP transceivers have the same cost as in fixed P2P, that is 12 CU, while low-

bitrate transceivers cost one half, that is 6 CU, in line with [Hos22].  

Figure 6 shows an evolution of total cost (in CU) for interconnecting 1,000 nodes, either using 

P2MP or P2P technologies. The bars represent the total cost when each leaf node offers a traffic 

volume uniformly distributed U(10,50) (30 Gb/s on average), then U(50,100) (75 Gb/s on 

average) and finally U(100,150) (125Gb/s on average). These 30, 75, and 125 Gb/s represent 

traffic values of ACOs serving small neighborhoods (say 10,000 households offering 3 Mb/s on 

average per household [Her19], and their evolution in the short term (after three years) and 

medium term (after five years). As shown, the total cost of using P2MP technology is always 

smaller than that of P2P technology. 

 

Figure 6. Total cost evolution in the short and medium term for 1,000 nodes: P2MP vs P2P 

technology. 

Thus, in conclusion, we have shown the applicability of Machine-Learning based clustering 

techniques to find groups of nodes whose aggregated traffic demands are best suitable for m x 

25 Gb/s P2MP topologies featuring digital subcarrier multiplexing. The clustering algorithm 

takes into account both uncorrelated daily traffic patterns and distance between the nodes and 

finds groups of nodes for building point-to-multipoint trees with low computational complexity. 

This algorithm has been tested on different simulated scenarios showing that the clustering 

algorithm allows about 10% savings in the number of trees with respect to other tree assignment 

heuristics. 

Finally, when the tree clustering dimensioning algorithm is compared against a network plan 

based on fixed P2P transceivers, important equipment reductions are achieved thanks to the 

dynamic bandwidth assignment allowed in point-to-multipoint trees. This implies capital 

expenditure savings between 40 and 50% approximately with respect to fixed P2P transceivers 

dimensioned to support peak traffic. 

3.2 REINFORCEMENT LEARNING BASED ROUTING FOR PACKET-OPTICAL NETWORKS WITH 

MULTILAYER MEASUREMENTS 
Path optimization for traffic flows is a method available to enhance the quality of experience 

(QoE) perceived by users. Network automation facilitates this goal by monitoring and collecting 

telemetry information and network states for both optical and packet-based data. Advanced 

AI/ML, or other intelligent algorithms are then applied to evaluate network performance. 

Subsequently, decisions are made, and actions are taken over the network to prevent or correct 
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possible performance issues that affect perceived QoE. This process is commonly referred to as 

closed-loop automation. Network automation is supported by various processes, including the 

implementation of SDN, aimed at moving towards a zero-touch network and service 

management approach [GALL22]. While having valid and up-to-date information is important, 

choosing the appropriate intelligent model to detect and correct performance problems allows 

for making the best decisions to optimize network operation. 

In this section, we focus on the second stage of zero-touch networking: optimal path decision 

based on both optical and packet-based telemetry information, using the well-known RL 

methodology, which enables optimal network configurations by allowing the control plane to 

learn from its interactions with the network and make decisions without human intervention. In 

the past, RL has been proposed to enable ZTN by providing the network with the ability to learn 

from its own experience and make decisions without human input [IAC22]. Several good surveys 

in this area are available [BAR20, HER23, MAM19]. 

In particular, we provide a methodology for generating rewards in an RL environment, where 

such rewards are based on both optical telemetry information (i.e., pre- Forward Error 

Correction (FEC) Bit Error Rate (BER)) and packet routing measurements (i.e., latency and queue 

occupation). Open-source code is also provided for the interested reader willing to replicate the 

experiments and incorporate new features into the algorithm [GAR20]. We use the igraph library 

for building network topologies and an implementation of the Q-learning algorithm for finding 

the optimal routing policy in a packet-optical network where a Path Computation Elements (PCE) 

decides the best route selection for every source-destination pair, using both optical metrics 

(measured pre-FEC bit error rate) and packet latency measurements (including propagation 

delay and link load).  

The decision to employ Q-learning in addressing optical network routing challenges is grounded 

in its suitability for environments characterized by dynamic and stochastic nature. Optical 

networks, with their intricate configurations and the necessity for real-time adaptability, present 

a problem space where the state and action spaces can be vast and complex. Q-learning's model-

free property allows for direct learning from the environment, making it ideal for optimizing 

routing decisions in the face of fluctuating network conditions without the need for a predefined 

model of the network's behavior. This adaptability is crucial for enhancing resource allocation, 

minimizing congestion, and improving fault tolerance within optical networks. The code is 

publicly available in Github for further developments by the research community [GAR20]. 

3.2.1 Detecting convergence episode in Reinforcement Learning 

An essential aspect of RL that enhances the efficiency and reliability of algorithms, such as Q-

learning, is the concept of convergence. Convergence in the context of RL signifies the point at 

which the algorithm's learning stabilizes, and its predictions (or decisions) no longer undergo 

significant changes. This stability is crucial for ensuring that the algorithm can reliably guide 

decision-making processes, such as optimal routing in network topologies. 

The detection of convergence is pivotal for several reasons: 

• Reliability: It signals that the algorithm has sufficiently explored and exploited the 
environment to make consistent decisions. 

• Efficiency: It helps in determining the point beyond which further training might not 
yield significant improvements, thus saving computational resources. 

• Benchmarking: Knowing when an algorithm converges is essential for comparing the 
effectiveness of different strategies or parameter settings. 
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To detect convergence in our project, we employ a function that analyzes the progression of Q-

values across episodes to identify the point at which these values stabilize. Here's a detailed 

explanation of the convergence detection process implemented in the code: 

• Threshold Setting: A threshold value is predefined to determine the acceptable level of 
variation in Q-values for the algorithm to be considered as having converged. In our 
case, this threshold is set to 0.01, indicating that changes in the Q-values below this level 
signify convergence. 

• Q-table Analysis: The function starts analyzing Q-tables from the 21st episode onwards. 
This delay allows the algorithm some initial episodes for exploration and learning before 
checking for convergence. 

• Previous Q-tables Comparison: For each current Q-table, the function retrieves the 20 
previous Q-tables and calculates their average. This moving average approach helps in 
smoothing out fluctuations and focusing on the overall trend in the Q-values. 

• Convergence Criterion: The convergence is detected by comparing the current Q-table's 
sum of Q-values against the average sum of the previous 20 Q-tables. If the squared 
difference between these two sums is less than or equal to the threshold, the algorithm 
is considered to have converged. 

3.2.2 Simulations and RL algorithm 

Example on a small network topology 

In the context of our study, we examine a network topology as depicted in Figure 7, which is 

structured around 8 interconnected nodes and 9 links. This topology is representative of a 

simplified model of an optical network, where nodes can be considered as switches or routers, 

and links represent the physical or logical connections between these nodes. 

 

Figure 7. Eight-node topology example with link metrics 

Furthermore, we assume that all nodes report telemetry measurements regularly to the control 

plane, in which our RL algorithm is running to decide best routing strategies between nodes. 

These measurements refer to the data collected by the nodes regarding the operational status 

of each link.  

In particular, each node reports: measured pre-FEC BER, which quantifies the error rate of bits 

on a link before FEC is applied; and link load, denoted as BERi and i  for the i-th link, which 

represents the utilization of the link's capacity. Monitoring link load is essential for avoiding 

congestion and ensuring efficient use of network resources. This information will be considered 
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along the link distance di in kilometers, since this can affect signal quality, latency, and the need 

for signal amplification or regeneration. 

Such monitored data (BERi, i, and di) serve as input to the RL algorithm operation within the 

control plane. The RL algorithm utilizes this data to dynamically adjust routing decisions, aiming 

to optimize network performance by minimizing negative impacts such as errors and congestion. 

Specifically, the algorithm assigns negative rewards (penalties) based on the reported metrics, 

encouraging strategies that lead to lower BER, optimal load distribution, and efficient path 

selection considering distance. The formulation of penalties could be a function of these metrics, 

reflecting the cost associated with choosing a link under current conditions, as it follows: 

• Propagation delay adds a penalty of di x 5 s/Km, that is, the classical 5 s/Km signal 
propagation latency per kilometer of silica fiber. 

• Traversing a given link also adds a latency penalty of 1 s x (1-i)-1, which is the average 
transmission and queuing delay of a 1250-byte packet transmitted over a 10 Gb/s link 

with load i (for a classical M/M/1 queue). 

• Monitored Pre-FEC BER adds a penalty of 1000 s if the BER value of that link is 10-4 or 

above; 50 s if the link's BER is in the range between 10-5 < BERi < 10-4; or a 0 s penalty 
otherwise.  

As shown, traversing each link adds both packet-based penalty, propagation-delay penalty, and 

optical pre-FEC BER-related penalty to either encourage or discourage links in a path. This set of 

rules is crafted as Reward matrices for taking action a in state s (i.e. R(s,a) state-action pair), and 

inputs the Q-learning algorithm. Finally, node connectivity is also included as a bi-dimensional 

Matrix P(s,s') which contains the probability of jumping from state (or node) s to s'.  

Table 3 Primary Optimal Path Selection under Normal Conditions 

 Destination 

Source 1 2 3 4 5 6 7 8 

1 - 1-2 1-4-3 1-4 1-2-5 1-2-5-6 1-4-8-7 1-4-8 

2 2-1 - 2-3 2-1-4 2-5 2-5-6 2-5-6-7 2-1-4-8 

3 3-4-1 3-2 - 3-4 3-2-5 3-2-5-6 3-4-8-7 3-4-8 

4 4-1 4-1-2 4-3 - 4-1-2-5 4-1-2-5-6 4-8-7 4-8 

5 5-2-1 5-2 5-2-3 5-2-1-4 - 5-6 5-6-7 5-2-1-4-8 

6 6-5-2-1 6-5-2 6-5-2-3 6-5-2-1-4 6-5 - 6-7 6-7-8 

7 7-8-4-1 7-6-5-2 7-8-4-3 7-8-4 7-6-5 7-6 - 7-8 

8 8-4-1 8-4-1-2 8-4-3 8-4 8-4-1-2-5 8-7-6 8-7 - 

Table 4 Secondary Optimal Path Selection under Degraded Conditions 

 Destination 

Source 1 2 3 4 5 6 7 8 

1 - 1-2 1-4-3 1-4 1-2-5 1-2-5-6 1-4-8-7 1-4-8 

2 2-1 - 2-3 2-1-4 2-5 2-5-6 2-5-6-7 2-1-4-8 

3 3-4-1 3-2 - 3-2-1-4 3-2-5 3-2-5-6 3-2-5-6-
7 

3-2-1-4-
8 

4 4-1 4-1-2 4-1-2-3 - 4-1-2-5 4-1-2-5-
6 

4-1-2-5-
6-7 

4-8 

5 5-2-1 5-2 5-2-3 5-2-1-4 - 5-6 5-6-7 5-2-1-4-
8 

6 6-5-2-1 6-5-2 6-5-2-3 6-5-2-1-
4 

6-5 - 6-7 6-5-2-1-
4-8 

7 7-6-5-2-1 7-6-5-2 7-6-5-2-
3 

7-6-5-2-
1-4 

7-6-5 7-6 - 7-6-5-2-
1-4-8 

8 8-4-1 8-4-1-2 8-4-1-2-
3 

8-4 8-4-1-2-
5 

8-4-1-2-
5-6 

8-4-1-2-
5-6-7 

- 
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Table 3 shows the optimal routing policy decided by our RL algorithm for the 8-node topology 

of Figure 7. The policy finds the best next hop and primary path from source to destination taking 

into account the rewards for a given pre-FEC BER, propagation delay, and link load. In the 

example of Figure 7, all links operate with good quality optical links, i.e., pre-FER under 10-5, 

hence only propagation delay and link load contribute to finding the best primary end-to-end 

path. However, if the optical quality of a link degrades (Table 4), then the RL algorithm finds an 

alternative or secondary route. This is the situation observed in the table when links 3-4 and 7-

8 experience degraded pre-FEC BER. As shown, the RL algorithm finds new routes that avoid the 

use of such low-quality links (marked in bold font).  

Extended example on a medium topology: Tokyo MAN 

Figure 8 shows the 23-node MAN topology for Tokyo [TAC23] for testing our algorithm. 

 

Figure 8. Tokyo Topology 

In this detailed examination, given the extensive scale and intricate nature of the network 

topology, our analysis will be concentrated on a select number of routing paths rather than the 

entire network. Key routes, including but not limited to the journey from Router 1 to Router 22, 

will be scrutinized. The optimal paths for these specific routes under normal conditions (primary) 

are depicted in Table 5, that also includes secondary routes after degradation of links 1-6, 1-4, 

and 10-11. 

Table 5 Optimal Policy: primary (in normal operation) and secondary (after degradation of links 

1-6, 1-4 and 10-11 for the Tokyo Topology) 

From To Primary Reward Secondary Reward 

1 22 1-6-7-22 -123.55 1-5-18-21-22 -151.00 

4 7 4-1-6-7 -121.88 4-5-18-21-7 -157.61 

4 11 4-13-10-11 -121.01 4-13-12-11 -122.83 

1 19 1-4-16-19 -101.81 1-5-16-19 -108.21 

 

To further validate the efficiency and adaptability of our Q-learning algorithm, we have 

incorporated a convergence analysis for the Tokyo MAN topology. The convergence graphs 

(before and after degradation of links), as shown in Figure 9 (left) and Figure 9 (right) illustrate 

the algorithm's progression towards a stable state of learning across episodes. This graph is 

critical for understanding how quickly and effectively our algorithm adapts to the complex 

network environment of the Tokyo topology. 
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Figure 9. Convergence of RL algorithm before (left) and after (right) link degradation for the 

Tokyo topology 

The Y-axis represents the squared difference of Q-values between episodes, which is an 

indicator of how much the Q-values are changing between successive episodes of learning. The 

X-axis shows the number of episodes, which are iterations of the learning process where the 

agent interacts with the environment and updates its Q-values. Let us provide more information 

on the first convergence graph: 

• Initial Learning Phase (Episodes 0-100): The plot starts with a sharp peak, indicating 
significant changes in the Q-values between the initial episodes. This behavior is typical 
in the early stages of Q-learning as the algorithm is exploring the environment and 
updating its knowledge base with new experiences. 

• Rapid Convergence Phase (Episodes 100-585): After the initial peak, there is a rapid 
decline in the squared difference of Q-values, suggesting that the algorithm is quickly 
learning from its interactions with the environment. The steep slope of the curve reflects 
the Q-learning algorithm's efficiency in adapting its policy based on the received 
rewards. 

• Convergence Point (Episode 585): The plot levels off around episode 585, marking the 
convergence point of the algorithm. At this stage, the changes in Q-values have 
decreased to a level below the predefined threshold, indicating that the algorithm's 
policy has stabilized and is consistently making similar decisions across episodes. 

• Post-Convergence Phase (Episodes 585-2000): Beyond episode 585, the graph shows 
minimal fluctuations around what appears to be a horizontal line close to zero. This 
horizontal trend indicates that the Q-learning algorithm's Q-values have stabilized and 
that the agent's policy is no longer changing significantly with further learning. The 
algorithm has effectively learned the optimal policy given the environment and the 
reward structure it has been interacting with. 

The same analysis goes for the second graph, in which the convergence point occurred at 

Episode 497. 

Extended example on a large topology: Milano MAN 

Let's now take a look to an even larger topology. Figure 10 shows a 52-node MAN topology that 

closely represents the city of Milano. 
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Figure 10. Milano topology 

In this case, given the even more extensive scale of the network topology, our analysis will be 

again concentrated on a select number of routing paths rather than the entire network. The 

optimal paths for these specific routes under normal conditions (primary) are depicted in Table 

6 that also includes secondary routes after degradation of links 1-6, 1-4, and 10-11. 

Table 6 Optimal Policy: primary (in normal operation) and secondary (after degradation of links 

5-6, 7-23, 22-41, 29-30 for the Milano Topology) 

From To Primary Reward Secondary Reward 

5 22 5-6-7-22 -121.45 5-18-19-20-6-7-22 -248.52 

7 50 7-22-41-50 -1944.66 7-6-21-40-51-50 -2121.94 

13 32 13-29-30-31-22 -135.63 13-4-5-16-15-32 -176.65 

44 52 44-43-23-7-6-20-52 -221.95 44-9-8-1-2-6-20-52 -296.21 

 
In this case, we can also further validate the efficiency and adaptability of our Q-learning 

algorithm with a convergence analysis. The convergence graphs (before and after degradation 

of links) in this case are the ones delineated in Figure 11. Before degradation, convergence 

occurred at Episode 1270; and after degradation it happened at Episode 1331. 

 

Figure 11. Convergence of RL algorithm before (left) and after (right) link degradation for the 

Milano topology 

As shown, RL algorithms are very suitable for finding optimal routing policies taking into account 

different physical and optical metrics (link distance and pre-FEC BER) and congestion-based ones 

(link load). The RL algorithm is open-source and can be modified to enforce finding optimal paths 

based on other metrics, just by assigning rewards (or penalties) to different links based on speed 

or power consumption. Future work will include the application of the algorithm to other 
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topologies that incorporate different segments of the network and also adding other QoE 

parameters as inputs for the algorithm. 

3.3 LATENCY CONSTRAINED SERVICES 
EONs have emerged as a sophisticated backbone infrastructure, pivotal for accommodating the 

burgeoning demands imposed by next-generation services, such as B5G, cloud computing, and 

the Internet of Things (IoT). These networks are tasked with fulfilling increasingly stringent 

requirements concerning bandwidth, latency, and reliability to support a wide range of 

applications. Therefore, EONs require flexible and efficient management of optical fiber 

spectrum resources. 

A crucial challenge addressed in EONs is the RSA problem, where the objective is to optimize the 

path and spectrum allocation for lightpath requests while adhering to QoS constraints, such as 

maximum tolerated latency and guaranteed bandwidth. This problem's complexity is 

heightened by the need for a careful balance between efficient spectrum utilization and 

satisfaction of stringent end-to-end service requirements. 

DRL has proven its effectiveness in the context of RSA in EONs [Ch19]. The introduction of DRL-

based solutions represents a significant shift from traditional heuristic approaches to a more 

dynamic, intelligent, and autonomous system of network control and operation. In this context, 

DRL agents learn to make RSA decisions through interactions with the network environment. 

These agents aim to maximize a cumulative reward that encapsulates both the efficiency of 

spectrum utilization and adherence to service QoS requirements. 

In this section, DRL-based strategies focusing on latency-aware RSA are presented and validated, 

revealing a promising approach to enhance the dynamism and responsiveness of EONs in 

facilitating diverse network services [Her23, Her22b]. 

3.3.1 SDN Control Plane  

In the considered EON, a SDN controller oversees the entire service lifecycle, handling new 

service demands, resource allocation, and network element configuration. Connectivity services 

are requested through an API via the northbound interface. The SDN controller then coordinates 

with an external entity for path computation. Then the computed path is sent back to the 

controller, which executes the resource allocation, which includes programming transponders 

and ROADMs through southbound interfaces. The external entity performing RSA decisions is 

aided by machine learning models, and all network state information is stored in the Transport 

API (TAPI) "Context" for the path computation entity's use. Figure 12 illustrates the architecture 

and components of the SDN control plane. 
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Figure 12. SDN control plane 

3.3.2 DRL-based latency-aware RSA  

Upon receiving a path computation request, the externalized ML-assisted PCE, in this case the 

DRL agent, retrieves the EON's current state to create a precise state representation. Then, this 

representation is used by DNNs to decide RSA actions. These decisions aim to fulfill connectivity 

service requests by identifying feasible paths (encompassing nodes, links, and frequency slots) 

while considering the network's current conditions and the bandwidth and latency requirements 

of the service.  

The network state used by the DRL agent is formed by several critical components that define 

the current condition and operational parameters of the EONs. These components encompass: 

• Source and Destination Nodes: Initial and terminal points of the requested optical 

connection. 

• Bandwidth Requirement: The amount of bandwidth that the service connection requires, 

represented by the number of FSs needed to fulfill the demand of the connection. 

• Latency Requirement: The maximum tolerated end-to-end latency for the service 

connection, indicating the maximum delay that can be accepted for the connection to be 

considered successful. 

• Current Spectrum Utilization: This includes detailed information on the optical spectrum 

available for every candidate path, particularly focusing on: 

o The position of the first available FS block, providing an indication of where in 

the spectrum the first unoccupied slot is located. 

o The average size of available FS blocks, which offers insights into the 

fragmentation and distribution of free spectrum slots. 

o The total number of available FSs, giving a clear picture of how much of the 

spectrum is currently unoccupied and potentially usable for new connections. 

o Specific characteristics for every candidate path, including end-to-end delay and 

spectrum utilization, to facilitate optimal path selection by the DRL agent. 
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The DRL agent operates within a pre-defined action space, choosing one of several candidate 

paths as the most suitable option for each request. It uses a reward function that considers both 

the bandwidth and latency requirements of the connectivity service. The function awards 

actions that allocate higher bandwidth and prioritize lower-latency connections, promoting an 

optimal balance that enhances overall network performance. Specifically, the reward is a sum 

of a component proportional to bandwidth demand and an inverse component of latency, 

encouraging efficient and latency-aware resource allocation. The reward function is defined as 

follows:  

𝑅 = {𝑏 +
1

𝑙
, 𝑖𝑓 𝑠𝑢𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛

−10,                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (4) 

3.3.3 Simulations and Results 

To evaluate the performance of the DRL approach for latency-aware RSA, two EON topologies 

were used: a metropolitan network in Barcelona City Network (BCNNet) and a national core 

network across Great Britain (BTNet). BCNNet includes 14 nodes and 42 bidirectional links, while 

BTNet encompasses 22 nodes and 70 links, as shown in Figure 13. Both networks use identical 

frequency grids supporting 100 Frequency Slots (FSs) on optical fiber links. Optical connection 

requests are simulated between random pairs of nodes following a Poisson process with an 

inter-arrival time (λ) fixed at 2 seconds, and service duration time follows an exponential 

distribution with an average (µ), which varied to simulate different traffic loads. Bandwidth 

demands are distributed among two, four, and eight FSs, with each FS requiring 12.5 GHz, 

assuming a spectral efficiency of 1 b/s/Hz, which translates to a transmission rate of 12.5 Gb/s 

per FS. The required latency for connection requests was uniformly generated, ranging from the 

average shortest path delay to twice that value across all node pairs. For BCNNet, latency varied 

between 0.30 ms to 0.60 ms, while for BTNet, it ranged from 1.25 ms to 2.5 ms. The DRL agent 

employed DNNs with five fully connected hidden layers for its decision-making process. 

Different DNN structures were used for the two topologies, conditioned by their number of 

nodes. The policy network's output layer featured four neurons, indicating the probability of 

choosing one of four candidate paths. The Adam optimizer was used for training with a 10-4 

learning rate, and a discount factor was set to 0.95. Additionally, k-shortest paths first fit (kSPFF) 

computed the four candidate shortest end-to-end delay paths for path selection. 

 
(a) (b) 

Figure 13. Topologies used for the experimental evaluation 
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The performance of the proposed DRL-based RSA solution was compared to the traditional 

kSPFF heuristic algorithm in terms of Bandwidth Blocking Ratio (BBR). The BBR is defined as the 

ratio of the amount of bandwidth that could not be allocated due to blocking (unsuccessful 

provisioning of connectivity services) to the total bandwidth requested by all services. A lower 

BBR indicates better network performance, as it means a higher percentage of the requested 

services were successfully provided.  

 

Figure 14. Training phase of DRL RSA 

To train the DRL agent, the traffic load was set to 200 Erlangs. Figure 14 shows that, as the 

number of training episodes for the DRL model increased, a noticeable improvement in BBR was 

observed compared to the kSPFF algorithm. This indicates the DRL model's capability to learn 

and optimize its decisions over time, progressively enhancing its decision-making policy to better 

accommodate diverse network conditions and connectivity demands.  

 

Figure 15. Performance benchmarking of kSPFF and DRL RSA 

The performance of the trained DRL model was also assessed against the kSPFF algorithm over 

varying traffic loads, ranging from 50 to 250 Erlangs (Figure 15). For lower traffic loads (e.g., 50 

Erlangs), no significant difference in BBR was noted between the two approaches. However, as 

traffic loads increased, the DRL model showed a marked improvement in BBR. At a traffic load 

of 150 Erlangs, the DRL approach achieved a BBR reduction of 16.20% relative to kSPFF. 
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Moreover, at a high traffic load of 250 Erlangs, the DRL model outperformed the kSPFF algorithm 

by reducing the BBR by around 18.35%. 

These results underline the effectiveness and potential of using a DRL-based approach for RSA 

in EONs. Specifically, it showcases the DRL agent’s key role in enhancing EON service 

provisioning through ML-driven decisions, aiming to improve resource utilization, satisfy 

stringent latency requirements, and adapt to the dynamic network scenarios.  

3.4 FUNCTION PLACEMENT 
The integration of computing and networking resources is pivotal for the efficient deployment 

of network services that meet the diversified requirements. This challenge becomes exceedingly 

complex when considering the orchestration across distributed cloud infrastructure 

interconnected through EONs, especially in the context of VNF placement and the establishment 

of lightpaths. Various approaches to VNF placement have been proposed, including optimization 

problem solving, heuristics, and ML techniques [Vil20, Che21]. DRL is a promising ML approach 

due to its ability to handle high-dimensional network states and actions, and to consider long-

term performance through a discount factor. 

This section showcases the employment of DRL to tackle the intricacies of VNF placement and 

service provisioning within such advanced network infrastructures. Herein, realistic network 

services are represented as VNF Forwarding Graphs (VNF-FGs) with meshed VNF 

interconnections and arrive and depart dynamically. DRL-based approach evidences a significant 

outperformance over traditional algorithms in terms of service blocking rates [Her23b, Her23c]. 

3.4.1 Proposed Framework 

In this scenario, VNFs need to be placed across different points of presence (PoPs) in a substrate 

network. Each VNF has computational resource requirements, and the virtual links between 

VNFs have bandwidth and latency constraints. The process involves mapping VNFs to PoPs and 

establishing lightpaths (optical connections) between the selected PoPs to support the virtual 

link requirements. 

The crux of the proposed approach lies in utilizing two cooperating DRL agents. The first agent 

(Path DRL Agent) is tasked with computing the optimal lightpaths between PoPs, thereby 

managing the networking requirements such as spectrum (i.e., continuity and contiguity) and 

latency constraints native to EONs. The interaction between these agents is critical, as the 

output from the lightpath computation directly influences the decision-making process of the 

second agent (Compute DRL Agent), which focuses on the strategic placement of VNFs across 

available PoPs, based on computing resource availability and networking criteria. The Compute 

DRL agent receives a reward of 0 for successful VNF allocation, a positive reward for complete 

VNF-FG deployment based on allocated computing capacity, and a negative reward for failed 

VNF deployment. Figure 16 depicts the design of the devised DRL-based solution. The solutions 

provide a holistic framework for service provisioning that addresses both, computation and 

optical spectrum allocation challenges in the substrate infrastructure. This dual-focused 

approach ensures that all aspects of service delivery are optimized, leading to more reliable and 

efficient network service deployment. 
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Figure 16. DRL-based solution for VNF-FG Placement 

For each service request, Compute-DRL iterates over each VNF, trying to place it on a PoP that 

meets its resource requirements and the virtual link constraints. Compute-DRL takes as input 

the VNF resource demands, virtual link constraints, available PoP resources, and latencies of the 

computed lightpaths between PoP pairs. While the action space specifies the selected PoPs for 

hosting the VNFs. 

3.4.2 Simulations Scenario 

The evaluation of the proposed DRL approach was conducted on the NSFNet network topology 

with 14 optical nodes and 42 fiber links, shown in Figure 17(a). Each node has a PoP with 100 

CPU cores, and each optical link could accommodate 100 frequency slots. Three network service 

types with varying numbers of virtual network functions (VNFs), virtual links, bandwidth 

requirements, and maximum delay were defined as it is shown in Table 7.  

      

(a)                        (b) 

Figure 17. (a) NSFNet topology and (b) Unseen network topology 
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Table 7 Network Service Types 

(NSD type)  # of VNFs # of VLs Bandwidth (FSs) Latency (ms) 

Industry 4.0  2 2 2 5 

Automotive  4 10 4 10 

Media  6 20 8 15 

3.4.3 Performance Evaluation 

For the evaluation, Compute-DRL agent was implemented based on the Proximal Policy 

Optimization (PPO) algorithm. Furthermore, some key innovations were incorporated in the 

solution. A notable advancement in the DRL algorithm's efficiency is the incorporation of invalid 

action masking. This technique significantly narrows down the action space for the agents by 

excluding infeasible actions, thereby reducing the training time and enhancing decision-making 

accuracy. It allows the DRL agent to converge faster during training. Results show that DRL agent 

with invalid action masking (Maskable PPO) converges 22% faster (i.e., from 3.6 to 2.8 million 

episodes) and achieves higher average rewards during training than a DRL agent without it, as it 

is shown in Figure 18(a). 

   

(a)                                 (b) 

Figure 18. Convergence of DRL-based solution, and Network service blocking rate 

The experimental results also show that the DRL approach outperforms the baseline Non-

Recursive Greedy SFC Placement (NGSP) algorithm by reducing the number of blocked services. 

NGSP selects the PoP with higher residual computing resources and computes lightpaths using 

the k-shortest path algorithm. This is achieved through the cooperation between the two DRL 

agents, where each agent focuses on solving a specific problem (spectrum assignment or 

compute allocation), and the output of one agent is used as input for training the other. As can 

be seen in Figure 18(b), under 50 Erlangs of request load, the blocking rate obtained from the 

agent trained with Maskable PPO achieves the best performance, reducing blocking by 12.8% 

compared to that of the NGSP algorithm. Maskable PPO slightly reduces the blocking rate by 

0.6% compared to the agent trained with PPO. 

Once the DRL training is complete, the trained model was tested on an unseen network topology 

(Figure 17(b)) with 14 nodes and 22 bidirectional links to assess its generalization capability. 

Figure 19(a) exhibits that the DRL-based solution significantly outperformed a heuristic 

benchmark algorithm in both the original NSFNet topology and the unseen topology regarding 

the service blocking rate. This demonstrates not only the efficacy of the DRL solution in 

optimizing VNF placements but also its strong adaptability to different network topologies 

without prior exposure. To evaluate the capability of the DRL solution to adapt and improve over 

time by learning from its interactions with a dynamically changing environment, the trained 
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model was used to learn in the unseen network topology. By using a pre-trained model, training 

convergence is accelerated, as shown in Figure 19(b). 

 

(a)       (b) 

Figure 19. (a) Network service blocking rate and training convergence in unseen topology 

In conclusion, the integration of sophisticated DRL techniques paves the way for more 

autonomous, efficient, and flexible network service provisioning in multi-layered network 

infrastructures like those involving EONs and distributed cloud systems. Leveraging the synergy 

between DRL agents helps to manage the complex demands of modern network services and 

scale solutions to encompass changing network topologies, and their applicability in real 

scenarios. 
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4 FAILURE MANAGEMENT 

The performance of optical devices can degrade because of aging and external causes like, for 
example, temperature variations. Such degradation might start with a low impact on the QoT of 
the supported lightpaths (soft-failure). However, it can degenerate into a hard-failure if the 
device itself is not repaired or replaced, or if an external cause responsible for the degradation 
is not properly addressed.  

The QoT is related to the linear and nonlinear (NL) optical noise, and it can be estimated based 
on a model describing the physics of propagation, e.g., the generalized Gaussian Noise (GN) 
model. Additionally, effects such as aging of optical devices might severely affect the QoT. Aging 
effects are usually considered by means of costly system margins. Examples include: i) the 
degradation of Optical Amplifiers (OA), which can be quantified as increased Noise Figure (NF); 
and ii) detuning of the lasers in the TRXs or frequency drift of the filters in Wavelength Selective 
Switches (WSS), which can lead to misalignments. If those degradations (soft-failures) are not 
properly handled (e.g., by retuning, repairing, or replacing the related optical device), they can 
degenerate into hard-failures when the SNR reduces, and zero post-FEC error cannot be 
achieved (FEC limit); this could affect a large portion of network services. Therefore, it is of 
paramount importance not only to detect any QoT degradation, but also to identify the cause 
and localize the device causing the degradation. 

Further, a considerable effort is being paid towards disaggregating the optical layer to enrich the 
offer of available solutions and to enable the deployment of solutions that better fit optical 
network operators’ needs. Such disaggregation, however, tends to make network surveillance 
and maintenance more complex in general, due to the absence of vendors providing support of 
vertically integrated network equipment. 

To support failure management, the control plane needs to be enriched with Monitoring and 
Data Analytics (MDA) capabilities. Once monitoring data, notifications, and alarms have been 
collected from the data plane, data analytics algorithms (e.g., based on ML techniques) can 
analyze them to proactively detect the degradation, identify and localize the cause, and 
anticipate hard-failures before they occur. Once detected, identified, and localized, 
recommendations can be issued to the network controller so it can decide about rerouting 
and/or reconfiguring the network, as well as notifying the management plane for maintenance. 
Note that ML-based approaches require training and validation datasets, which makes their 
practical application difficult due to key drawbacks, namely: i) limited data availability; ii) long 
duration of the training and validation phases until obtaining robust and reliable ML models (this 
could be accelerated by using simulation tools in sandbox domains); iii) poor adaptability in the 
event of physical layer changes; and iv) reduced exportability to other scenarios/ conditions 
different than those used for training. 

The topic of failure management in optical networks (including anticipated detection, 
identification, and localization) has been extensively explored. Previous works centered on 
analyzing the QoT represented by the measured BER, spectrum, etc. for detecting failures, or 
correlating alarms for localization. In contrast, the status of optical devices can be through 
measures related to device parameters like optical power, gain, temperature, etc. to proactively 
detect and localize potential faults and determining the likely root-cause. This approach to 
failure detection, derived from the analysis of devices’ parameters, is key to really identify and 
localize the failure itself. 

However, it is not always possible to obtain the right value of those devices’ parameters that 
can be related to the QoT, in particular in disaggregated scenarios. Note that any QoT model 
uses a set of input parameters to describe the specific characteristics of the different optical 
devices that participate in the optical layer, like WSSs as building blocks of Reconfigurable 
Optical Add / Drop Multiplexers (ROADM), TRXs, and In-Line OAs, e.g., Erbium Doped Fiber 
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Amplifier (EDFA). In such cases, ML methods can be used for finding the right value of such QoT 
model’s parameters aiming at improving the QoT estimation. Our approach applies reverse 
engineering from the real QoT values—collected periodically from the TRXs—to derive the 
evolution of the value of QoT model’s parameters (referred to as modeling parameters) that 
explain such QoT observations. We believe that, by analyzing such evolution, it is possible to 
anticipate more precisely future degradations, and enable failure localization. 

4.1 FAILURE DETECTION, LOCALIZATION AND IDENTIFICATION 

This section details our proposed MESARTHIM methodology that targets at: i) detecting and 
localizing the optical device responsible for the soft-failure; ii) identifying the modeling 
parameters that explain the observed effects in the QoT; and iii) estimating the evolution of the 
value of such parameters to find whether the soft-failure will degenerate into a hard-failure. 
This advanced network performance analysis procedure facilitates diagnosis and network 
maintenance. Furthermore, since the relation between monitored SNR and modeling 
parameters is not linear, the analysis carried out in the later space (i.e., modeling parameters) 
can accelerate soft-failure detection, identification, and localization. Specifically, the 
contributions are: 

1. The MESARTHIM methodology for soft-failure detection, identification, and localization, 
modeling parameter estimation and severity estimation. 

2. Network surveillance and soft-failure localization based on device modeling parameter 
estimation, which is a key part of the MESARTHIM methodology. 

3. Procedures for identification and severity estimation, once a soft-failure has been detected 
and localized. 

The discussion is supported by the experiments and numerical results. 

4.1.1 The MESARTHIM Methodology 

Among the effects degrading the QoT within optical systems, we consider degradations arising 
from ROADMs and In-Line OAs, where a ROADM consists of WSSs and OAs. Both building blocks 
face aging and non-ideal conditions. For example, although OAs are considered robust devices, 
they also suffer time-varying effects like Noise Figure (NF) which might increase over time due 
to the aging of the amplifier building blocks. The NF is also frequency-dependent and, as the 
allocation of the spectrum might become time-dependent. Therefore, the NF can be modeled 
as a time-frequency variation. The pump lasers of the EDFAs also subject to degradation, which 
can be adjusted thanks to internal control loops, but which still reduces the EDFA efficiency. For 
what concerns the WSSs, they might suffer temperature-dependent variations, which might lead 
to frequency shift over time; furthermore, individual channels can drift as well, and both effects 
can be highly detrimental in terms of QoT. We consider gradual time-varying device 
degradations on OA and add/drop (A/D) WSSs in the ROADMs. Specifically, we consider that 
soft-failures can be explained by one of the following events in the modeling parameters: a) NF 
increase; b) maximum optical output power (P-max) decrease; and c) Optical SNR (OSNR) 
degradation caused by frequency drifts of the WSSs due to temperature fluctuation. 
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Figure 20. Overview of the proposed failure analytics architecture and the MESARTHIM 

methodology 

Our proposed architecture for soft-failure analysis is illustrated in Figure 20. The optical layer 
consists of a disaggregated set of ROADMs and TRXs, and a set of optical links with a number of 
In-Line OAs interconnecting ROADMs. The control plane includes: i) a Network Controller to 
program the network devices, which is coordinated by the Network Management plane, and 
includes network maintenance; ii) an MDA system that collates measurements from the data 
plane, analyses the data and issues recommendations to the network controller, as well as 
notifications regarding failures; and iii) a QoT tool based on GNPy that estimates the SNR of the 
lightpaths and it is used for connection provisioning and for failure analytics. 

The MDA system stores a replica of the operational databases (DB) that are synchronized from 
the network controller. In addition, it collects measurements from the optical devices with a 
given periodicity and stores them in a Monitoring DB; we assume that the MDA collects SNR 
samples from the TRXs every 15 minutes. These measurements are used by MESARTHIM to: i) 
estimate those modeling parameters related to optical devices (resources); ii) analyze the 
evolution of the measured SNR and that of the modeling parameters to detect any degradation 
as soon as it appears; and iii) determine the severity of the degradation based on the foreseen 
impact on the performance of the lightpaths. 

Figure 20 also sketches the MESARTHIM methodology implemented in the MDA system. 
Specifically, the following building blocks can be identified: (i) the Surveillance block that 
analyzes the SNR measurements and the value of modeling parameters to detect any 
meaningful degradation (e.g., by threshold crossing); (ii) the Localization block that localizes the 
soft-failure; (iii) the Find Modeling Configuration block that finds the most likely value of the 
modeling parameters of a given resource, so it results into SNR values of the lightpaths being 
supported by such resources similar to those that have been actually measured; (iv) the soft-
failure Identification block that, assuming a resource has been localized as the source of the soft-
failure, finds what is the modeling parameter responsible for such failure; and (v) the Severity 
Estimation block that estimates whether and when the soft-failure will degenerate into a hard-
failure. In addition, two internal repositories are used: a) the Device Modeling Config DB with 
the evolution of the value of modeling parameters along time for every resource; and b) the 
Network Diagnosis DB that stores historical data for analysis purposes. The MESARTHIM 
manager coordinates those blocks to achieve intelligent QoT analysis, as well as manages the 
interface with the QoT tool. The main procedures for the different blocks of MESARTHIM are 
detailed next. 

4.1.2 Surveillance and Localization 

In this section, we describe two different approaches for the surveillance block, named SNR-wise 
that analyzes the evolution of the SNR, and Modeling-wise that analyzes the evolution of the 
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value of modeling parameters. Resources affected by a soft-failure procedure are localized. 
Additionally, the main procedure for the Find Modeling Configuration block is presented. Table 
8 introduces the used notation. We assume that surveillance is carried out periodically, e.g., 
after at least one new SNR measurement has been collected for every lightpath in the network. 
Both algorithms return the resources with the found likely modeling configuration, each with a 
subset of lightpaths, indicating that some soft-failure has been detected. 

Table 8. Notation for Failure management 

G Graph representing the network topology. 
P Set of all lightpaths 
P’ Subset of lightpaths (P’⊆P) 
R Set of optical devices, index r. 
C Set of clusters of lightpaths with found same behavior ({<behavior, P’>}) 
SR Set of suspicious resources. Each element identifies the resource r and the 

lightpaths that it supports (SR = {<r, P’>}). 
SF Set of Soft-Failures. (SF = {<r, P’>}) 

SNR-wise Surveillance 

This approach focuses on the analysis of SNR measurements and compares them to the SNR 

estimated by the QoT tool for every lightpath, to detect any meaningful deviation (exceeding a 

differential threshold). The lightpaths that exceed the differential threshold are considered 

degraded and are further analyzed in terms of the behavior of the measured SNR evolution to 

find a correlation among them; behavior is the result of stationarity analysis of the SNR 

evolution. Non-stationary patterns (e.g., trend, periodicity), if found, are quantified (e.g., a 

period interval in case of seasonality) to compose the behavior. For illustrative purposes, Figure 

21 shows three examples of behavior: a) stationary (typical for lightpaths that do not exceed the 

differential SNR threshold); b) gradual decay; and c) cyclic. In the case of finding groups of 

lightpaths with similar behavior, common underlying resources are analyzed to localize the 

responsible one for such degradation. It is worth highlighting that grouping lightpaths with 

similar behavior enables localizing multiple soft-failures. In such a case, the likely configuration 

parameters are estimated using the Find Modeling Configuration block with all lightpaths 

supported by that resource. 

 
Figure 21. Three examples of behavior. 

Algorithm 1 describes the procedure used to find the behavior of the evolution in time of a time 
series data. The algorithm receives an object x, which includes: i) the time series to be analyzed 
(e.g., the SNR of a path p); ii) a window size w used for smoothing purposes; and iii) a threshold 
thr used to detect a significant non-stationary behavior. The data series (Y) is smoothed (Ỹ) by 
computing a moving average in non-overlapped windows of size w (lines 1-2 in Algorithm 1). 
Then, the difference between maximum and minimum in Ỹ is computed and compared with the 
threshold; if it is lower than the threshold, no behavior is returned (line 3). Otherwise, the 
algorithm carries out an analysis to characterize the type of behavior by clearly distinguishing 
between gradual degradation (gradual) and cyclic fluctuation (cyclic), as well as any other 
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undefined evolution (e.g., random peaks). Specifically, if Ỹ presents an incremental or 
decremental monotonic evolution, the fittest trendline (in terms of Pearson correlation 
coefficient) among linear, polynomial, exponential, and logarithmic trends is computed and 
returned as a parameter of the identified gradual degradation (lines 4-6). Otherwise, the 
periodicity of Ỹ is computed based on the results of automated periodogram power spectral 
density analysis. In case that a significant period is found, cyclic fluctuation with that period is 
returned (lines 8-9), whereas other behavior is returned if neither gradual nor cyclic behavior is 
found (line 10). 

Algorithm 1. Find Behavior Procedure 

INPUT: x OUTPUT: hasBehavior 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11: 

Y ← x.<time series>        # snr OR evol 
Ỹ ← nonOverlappingMovingAverage(Y, x.w) 
if max(Ỹ) - min(Ỹ) < x.thr then return False 
if isMonotonic(Ỹ) then 

trendline ← computeFittestTrendline(Ỹ) 
x.behaviour ← <“gradual”, trendline> 

else 
period ← findPeriodicity(Ỹ) 
if period then x.behaviour ← <“cyclic”, period> 
else x.behaviour ← <“other”, ∅> 

return True 

Algorithm 2. SNR-wise Surveillance Algorithm 

INPUT: G, P, T, current_t OUTPUT: SR 

1: 
2: 
3: 

 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11: 
12: 
13: 

 
14: 
15: 
16: 
17: 
18: 

P’ ← ∅ 
for p in P do 

if getMonitoringData(p, current_t) < 
SNR_threshold(p) then 

P’ ← P’ ∪ {p} 
if P’ = ∅ then return ∅ 
C = {<behavior, P’>} ← ∅ 
for each p in P’ do 

p.snr ← getMonitoringData(p, T) 
hasBehavior ← findBehavior(p) 
if hasBehavior then addByBehaviorSimilarity(C, p) 

if C = ∅ then return ∅ else SR ← ∅ 
for each c in C do 

R = {<resource, P’>} ← 
FindCommonResources(G, c.P’) 

SR ← SR ∪ R 
for each r in R do 

r.evol ← ∅ 
for each t in T do findLikelyModelingConfig (r, t) 

return SR 

Algorithm 2 details the pseudocode of the SNR-wise Surveillance algorithm; it receives as input 

the network graph G, the list P of lightpaths currently established in the network, the number T 

of historical monitoring samples to be considered, and the current time (current_t). The 

algorithm first retrieves and examines the last monitoring data available for every lightpath 

looking for those with degraded SNR (lines 1-5 in Algorithm 2). In case some SNR degradation is 

found, SNR-wise Surveillance proceeds with an in-depth SNR analysis carried out in two steps. 

During the first step, the set of clusters C, capturing the behavior observed in the lightpaths, is 
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found (lines 6-10); for this analysis, the last T monitoring samples are considered. Note that by 

considering the evolution of lightpaths’ SNR, spurious measurements in one lightpath can be 

detected and ignored. In the case that, at least, one set of lightpaths presents a similar behavior, 

e.g., decay or periodicity (as in Figure 21), the algorithm continues with the second step. The 

common resources supporting the lightpaths in each cluster c are computed and added to the 

set SR of resources that are suspicious of being affected by a soft-failure (lines 12-14). Moreover, 

for each common resource, a likely evolution of the input parameters is found (lines 15-17); the 

estimated configuration is stored in the Device Modeling Config DB for further analysis. The 

resources with the found likely configuration, each with a subset of lightpaths, are eventually 

returned (line 18). 

Modeling-wise Surveillance 

This surveillance approach analyses the evolution of the value of modeling parameters of the 

resources. In this case, the SNR measurements of all the lightpaths in the network supported by 

a resource are used to estimate the most likely modeling configuration of such resource using 

the Find Modeling Config block. The found modeling configuration is stored and its evolution is 

analyzed to detect any meaningful degradation, e.g., a significant trend and/or variation. 

Algorithm 3. Modeling-wise Surveillance Algorithm 

INPUT: G, P, T, current_t OUTPUT: SR 

1: 
2: 

 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 

SR ← ∅ 
R = {<resource, P’>} ← 

GroupPathsByResources(G, P) 
for each r in R do 

for each p in r.P do 
p.snr ← getMonitoringData(p, current_t) 

findLikelyModelingConfig(r, current_t) 
r.evol ← configDB.SELECT(r, T) 
hasBehavior ← findBehavior(r) 
if hasBehavior then SR ← SR ∪ {r} 

return SR 

Algorithm 3 details the pseudocode of the Modeling-wise Surveillance algorithm; it first 
initializes the SR data structure (line 1 in Algorithm 3) and creates the set of resources with the 
lightpaths that each one supports (line 2). Next, for every single resource, the algorithm uses 
the last SNR measurements to find the current value of the parameters modeling the resource, 
which are stored in the Device Modeling Config DB by the Find Modeling Configuration block 
(lines 3-6). The behavior of the modeling parameters evolution is analyzed (by calling Algorithm 
1) and, if a non-stationary pattern is found, the resource is added to the SR set (lines 7-9). It is 
worth noting that this analysis could detect soft-failures that have not yet had a relevant impact 
on the lightpaths (i.e., the SNR degradation threshold has not been exceeded yet), as parameters 
and SNR are not linearly related. 

Soft-Failure Localization 

In case that the surveillance phase has identified a set of suspicious resources, Algorithm 4 

localizes the soft-failures. The algorithm first removes the suspicious resources that explain the 

very same set of lightpaths (lines 1-6 in Algorithm 4), as localization is not yet possible in those 

cases. Next, the resources that explain the SNR of complete subsets of lightpaths are localized 

and classified as independent soft-failures, iSF (lines 6-10). The rest of the suspicious resources 

are related to soft-failures that affect common subsets of lightpaths, so a given lightpath can be 

affected by more than one soft-failure.  

 



 D4.3 GA Number 101016663 
 

34 

 

 

Algorithm 4. Soft-Failure Localization Algorithm 

INPUT: SR OUTPUT: iSF, mSF 

1: 
2: 
3: 
4: 
5: 

6: 
7: 
8: 
9: 

10: 

11: 

for each r in SR do 
Rr ← ∅ 
for each r’ in SR | r ≠ r’ do 

if r.P = r’.P then Rr ← Rr ∪ {r, r’} 

SR ← SR - Rr 

iSF ← ∅ 
for each r in SR do 

if r.P ∩ r’.P = ∅ ∀r’ SR | r ≠ r’ then  

iSF ← iSF ∪{r} 

SR ← SR - {r} 
return iSF, SR 

Finding the Most Likely Modeling Configuration 

The above surveillance approaches use the FindModeling Configuration block, which estimates 
the most likely modeling configuration of a given resource r. Given the ranges of feasible 
configuration values 𝕍 of r, the configuration estimation problem consists in finding the most 
likely values v, by minimizing the error (computed as mean squared error -MSE) between the 
measured (S) and the estimated (Ŝ) SNR for the set of lightpaths being supported by r, P(r), i.e.: 

min
𝑣∈𝕍

𝑀𝑆𝐸 (𝑆(𝑃(𝑟)), 𝑆̂(𝑃(𝑟)|𝑣)) (5) 

Algorithm 5. Modeling Config Search 

INPUT: P, r, vmin, vmax OUTPUT: <v, m> 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 

<v, m> ← configDB.getMin(); numIters ← 0 
while m > epsilon AND numIters++ < MaxIters do 

<vl, ml>, <vr, mr> ← configDB.getNeigbours(v) 

va ← intersect(v, m, vl, ml, vmin, vmax) 
vb ← intersect(v, m, vr, mr, vmin, vmax) 
if va = vl then va ← (v + vl) / 2 
if vb = vr then vb ← (v + vr) / 2 
ma ← configDB.getConfig(va) 
if ma = None then 

ma ← MSE(P.SNR, QTool(P, r, va)) 
configDB.addConfig(<va, ma>) 

mb ← configDB.getConfig(vb) 
if mb = None then 

mb ← MSE(P.SNR, QTool(P, r, vb)) 
configDB.addConfig(<vb, mb>) 

<v, m> ← configDB.getMin() 
return <v, m> 

The SNR estimation Ŝ(·) is obtained by calling the QoT tool and thus, the optimization problem 
in eq. (5) cannot be solved by traditional methods like Steepest Descent, which are based on 
computing the gradient of the function to be minimized. In view of that, the 
findLikelyModelingConfig() procedure uses the modelingConfigSearch() one (Algorithm 5) to 
solve the optimization problem in eq. (5). The algorithm interrogates the QoT tool with different 
values of the parameters and the configuration entailing the lowest error with respect to the 
SNR values measured is returned. The procedure assumes that: i) the function is convex in 𝕍, 
i.e., there is just one minimum that is the global minimum (tests supporting this assumption will 
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be carried out); and ii) there is just one of the modeling parameters of r with a value different 
than the initially found. The procedure fixes the value(s) of the parameter(s) and requests the 
QoT tool to compute, with such configuration, the SNR values of the lightpaths being supported 
by r. By computing the mse(·) function, the procedure determines if such configuration is likely 
enough or if more queries to the QoT tool are needed. 

As calls to the QoT tool are time consuming, modelingConfigSearch() targets at minimizing them; 
instead of using the brute force and request the estimation of the SNR for the whole range of 
possible values, the procedure uses the projection of two points to determine the next value of 
the parameters to be used for the estimation. As parameters typically evolve smoothly in time 
when devices are affected by a soft-failure, it also stores the last configuration(s) in the Device 
Modeling Config DB; every time it is called, it uses such configurations as starting points for the 
search aiming at finding the optimal solution fast. 

4.1.3 Soft-Failure Identification and Severity Estimation 

Let us now focus on the Soft-Failure Identification and the Severity Estimation blocks, which are 
assumed to be executed as soon as degradation is detected and localized (via SNR and/or device 
configuration analysis). These blocks make MESARTHIM able to generate notifications to the 
network controller containing not only the list of degraded lightpaths, but also their expected 
evolution and the estimated time for the soft-failure to degrade into a hard-failure. 

Let us imagine that the surveillance and localization analysis presented above detected some 
degradation at time t and therefore, non-empty ISR and/or MSF sets were found. In addition, 
let us define state as the combination of the estimated modeling configuration of the resources 
that are involved, and the SNR experienced by the supported lightpaths. With the aim of an 
accurate diagnosis, it is interesting not only to analyze the current state but also to predict its 
future evolution. It is for this very reason that historical data (within a pre-defined time window) 
are gathered from monitoring and device config DBs and stored in the Network Diagnosis DB. 
The evolution of each parameter (lightpaths’ SNR and device modeling config parameters) is 
analyzed individually using time series forecasting techniques. By using different techniques 
with different parametrization, several expected evolutions can be obtained as a practical way 
to generate different likely projections for parameter degradation. 

For illustrative purposes, let us analyze an example of the evolution of three parameters selected 
from a hypothetical state: the SNR of a given lightpath affected by an SNR degradation, as well 
as the NF and P-max parameters modeling an OA traversed by that lightpath. Figure 22 presents 
three time-evolutions of the OA modeling parameters and SNR, and their analysis at current 
time t. At this time, the failure has been correctly localized in the selected OA; however, the 
cause of the degradation (either NF or P-max) is still unclear. This is the reason behind 
performing the estimation and evolution analysis for all modeling parameters; such analysis is 
carried out following forecasting techniques. Three curves representing the upper (fu), centered 
(fc), and lower (fl) projected possible evolutions are depicted for each parameter. Based on such 
projections, monitored data are evaluated and an indicator (φ) is computed and used to discard 
modeling parameters while identifying the one that is the most likely to be the real cause of the 
observed performance degradation. Hence, the indicator provides large values when the 
modeling parameter is far from the expected behavior of an affected parameter. The obtained 
indicator is accumulated with the values obtained in the previous computations, and 
identification is positive when the parameter with the lowest accumulated indicator is far from 
all the rest of the parameters with a significantly higher accumulated one. This evidence can be 
easily observed by setting up a threshold allowing the discrimination of low and high 
accumulated indicator modeling parameters. 



 D4.3 GA Number 101016663 
 

36 

 

 
Figure 22. Example of identification and severity estimation at time t. 

Once the Soft-Failure Identification block has found enough evidence of the modeling parameter 
explaining the soft-failure, the Severity Estimation block uses the centered projection of the 
evolution of such modeling parameter to estimate the likely evolution of the SNR for the 
affected lightpaths (i.e., those being supported by the localized resource). Analyzing such 
evolution, it is easy to check whether any lightpath would exceed a given threshold. For instance, 
the minimum SNR defined by its modulation format and bit rate. The next subsections detail 
these two MESARTHIM blocks. 

Soft-failure Identification 

Algorithm 6 is used to identify the most likely modeling parameter(s) explaining the observed 
performance degradation; it receives as input the resource responsible for the soft-failure and 
the number T of historical monitoring samples, and, if sufficient evidence is found, it returns the 
modeling parameter identified as a potential failure. 

Algorithm 6. Soft Failure Identification 

INPUT: r, T OUTPUT: param 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11: 
12: 
13: 
14: 
15: 

v ← getModelingParameters(r) 

r.evol ← configDB.SELECT(r, T) 
for each i in v do 

Y ← getTimeSeries(r.evol, i) 
Yfit ← Y[1..T-δ] 
Yeval ← Y[T-δ+1..T] 
F ← fitTimeDependentFunctions(Yfit, δ) 
F*=<fl, fc, fu>←selectLikelyEvolution(F,T) 
r.φ[i]← φ(F*,Yeval) (Eq. (6)) 

v* ←selectHighIndicatorParameters(r) 
for each i in v* do 

r.accumφ[i]+=r.φ[i] 
if r.accumφ[i]>thr then v← v\i 

if |v| = 1 then return v.getFirst() 
return ∅ 

The algorithm starts by retrieving the modeling parameters v that characterize the state of the 
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resource, as well as the evolution of each modeling parameter in the last T measurements (lines 
1-2 in Algorithm 6). Then, each parameter i in v is evaluated independently to compute a score 
indicating how likely it is, that such parameter is responsible for the resource failure. Specifically, 
the time series of the parameter i is selected and split into two portions: one with the first T-δ 
data points (Yfit) used for fitting and a second one (Yeval), with the last δ measurements, used for 
evaluation and indicator computation (lines 3-6) (dark grey area in Figure 22). Using the Yfit 
segment, a set of time-dependent functions F, where the parameter value is modeled as a 
function of time, is obtained by applying Holt-Winters exponentially-based modeling and 
polynomial fitting in a wide range of degrees (e.g., from 1 to 7) (line 7). The set F contains all 
functions with similar goodness-of-fit, i.e., +/- 5% of variation in terms of Pearson correlation 
coefficient. Moreover, functions are evaluated in the time interval of Y to verify that trend is 
always monotonic; otherwise, the function is discarded. Then, three of those functions are 
selected to be the likely projections illustrated in Figure 22 (line 8). This selection contains: i) fl 
(lower) and fu (upper), with the functions with the lowest and highest value at the current time, 
respectively; and ii) fc (centered), with the function with the smallest number of coefficients 
providing maximum Pearson correlation coefficient (+/- 5%), which is assumed to be the most 
likely parameter evolution. 

After obtaining the likely projections, they are compared with the trendline (computed using 
the same methodology of fc ) in Yeval. This comparison is carried out using an additive multi-
factorial indicator (φ) that combines several Boolean and continuous variables according to Eq. 
(6), where xi represents a variable and bi the weighting coefficient for that variable.  

𝜑 = ∑ 𝑏𝑖
𝑖=1..𝑛

· 𝑥𝑖 (6) 

Table 9 briefly describes the considered variables, sorted in the descendent degree of 
importance. Two Boolean functions are used: x1 returns True if there is no evidence of 
degradation in the parameter, whereas x4 checks if any of the upper and lower projections is the 
same function as the centered one. In addition, two continuous variables are defined: x2 
accounts for the relative Mean Square Error (rMSE) of the data in the evaluation portion with 
respect to the centered projection, whereas x3 returns the minimum rMSE of the data with one 
of the projections. Note that if measurements in the evaluation portion follow a trend showing 
a parameter degradation similar to the projections (preferably, the centered one), the indicator 
remains low; otherwise, the indicator increases, indicating that the observed behavior differs 
from the expected one and therefore, the likelihood of the parameter not to be the cause of the 
failure increases. 

Table 9. Indicator function components 

i Description (xi) 

1 [boolean] Projections fl, fc, fu do not show parameter degradation 

2 [continuous] rMSE(Yeval, fc) 

3 [continuous] min(rMSE(Yeval, fi)) | i = {l,c,u} 

4 [boolean] fl = fc OR fu = fc 

Once the indicator is computed for all modeling parameters, characterizing the state of the 
resource, the selection of parameters, whose indicator is significantly higher than the rest, is 
conducted (line 10). Thus, considering φmin as the minimum indicator value of a parameter, the 
limit φmin+∆φ is defined as the reasonable limit for parameters with low indicator, being all 
parameters above φmin+∆φ selected as those with high indicator. For the resultant set of 
parameters (if not empty), the cumulative indicator is updated by adding the current one (lines 
11-12). Finally, the cumulative indicator is compared with an identification threshold thr and, if 
exceeded, the parameter is removed from the candidate parameter set (line 13). The 
identification is considered positive when just one parameter remains as a candidate and it is 



 D4.3 GA Number 101016663 
 

38 

 

eventually returned (line 14). Otherwise, the algorithm returns no identification (line 15). It is 
worth noting that the value of thr needs to be high enough to clearly identify the parameter 
without false positives. 

Severity Estimation 

Once a modeling parameter has been identified as the cause of the observed degradation, the 
severity estimation algorithm is executed. This method uses the projection of the modeling 
parameters to estimate when some affected lightpath will cross the FEC limit. Although the 
severity estimation could be based on the projected evolution of the modeling parameters, 
defining a threshold for each one is not easy as different lightpaths are impacted differently by 
its degradation. 

Algorithm 7. Severity Estimation 

INPUT: r, P, T, param OUTPUT: estimatedTime 

1: 
2: 
3: 
4: 
5: 
6: 
7: 

r.evol ← modelingConfigDB.SELECT(r, T) 
fc←getCenteredProjection(r.evol[param], timeWindow) 
for t in [1, timeWindow] do 

SNR ← Ŝ(P | fc(t)) 
for each p in P do 

if SNR[p] < p.minSNR then return t 
return INF 

Algorithm 7 details the pseudocode; it receives as input the resource responsible for the soft-
failure, the list of lightpaths supported by such device, the number T of historical monitoring 
samples, and the identified modeling parameter, and it returns the estimated time that the soft-
failure will cause a major impact on, at least, one of the lightpaths. The algorithm first retrieves 
the last T configuration values from the Device Modeling Config DB, which are used to compute 
the centered projection fc for the considered input parameter on a given time window (lines 1-
2 in Algorithm 7). The projection fc is used as the input parameter to estimate the SNR for the 
list of lightpaths; in case that the estimated QoT for any of the lightpaths falls behind the 
minimum SNR, the algorithm returns the estimated time of this event to happen (lines 3-6); 
otherwise, it returns a large value that exceeds the considered time window (line 7). 

4.1.4 Results 

Experimental assessment 

Being the basis of the MESARTHIM methodology, the Find Modeling Configuration has been 
evaluated experimentally in the testbed depicted in Figure 23. Two commercial coherent 
transponders (labeled TRX-1 and TRX-2), with optical line interface at 100G (32-GBd Quadrature 
Phase-Shift Keying -QPSK), have been connected using an optical multi-span link. The pair of 
transponders has been equipped with a specifically designed driver, enabling both the 
configuration and the real-time monitoring of the SNR; the generated signal is filtered by a WSS 
Wave Shaper device. The optical link consists of 4 spans, each realized by an 80 km single-mode-
fiber spool, for a total distance of 320 km. Five EDFAs have been used to compensate for the 
power attenuation; all being the single stage with gain in the range 15-25 dB. OA1 was 
configured with a constant 17.5 dB gain to compensate for the filter insertion losses and the 
other OAs with a constant gain of 16 dB to compensate entirely for the fiber losses within the 
span. 

Two different experiments were carried out. In the first, we reproduced the effect of a filter 
detuning. We configured the TRXs at 193.9 THz and the WSS with a bandwidth of 50 GHz, 
collecting the estimated SNR at TRX-2. Then, we reconfigured the WSS filter, reducing the 
bandwidth with steps of 2 GHz, until the operational status of TRX-2 card was down. GNPy was 
used as a tool to estimate the expected QoT for the lightpath. In order to estimate the QoT, 
together with the scenario that includes fiber types and span length, modeling parameters of 
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the WSS, OAs and the TRXs are provided as input to GNPy; it estimates the QoT using the 
generalized GN model, which considers both the ASE noise and NL Interference (NLI) 
accumulation. 

 
Figure 23. Experimental testbed. 

Assuming that the device responsible for the SNR measured in TRX-2 is unknown, we run the 
Find Modeling Configuration block of MESARTHIM to estimate the most likely modeling 
configuration of the WSS and one of the OAs in the optical link. Figure 24 presents the results 
obtained when the observed SNR is explained by a reduction in the OSNR of the A/D WSS (Figure 
24a) and by an increased value of the NF in one of the OAs (Figure 24b). We observe that changes 
in both modeling parameters could explain the evolution of the observed SNR in the lightpath 
with minimal error, being the resulting values of the modeling parameters within a feasible 
range. Note that with just one lightpath in this experiment, it is not possible to make any 
localization, as any of the devices could be responsible for the observed reduction in the SNR.  

 
Figure 24. Modeling parameter value vs. bandwidth for A/D WSS 

OSNR (a) and OA NF (b) 

 
Figure 25. SNR vs. link length  

In the second experiment, we slightly changed the multi-span link scenario with respect to that 
in Figure 23, by adding 5 dB attenuators before spans 2-4 emulating an additional 25 km in each 
span. Therefore, the gain of OAs 3-5 had to increase to 21 dB to compensate for the increased 
losses that also affected the NF of our amplifiers (which is inversely proportional to the 
configured gain). The experiment was carried out in three steps, where one span was modified 
at a time. For each step, we continuously collected the estimated SNR at TRX-2, detecting the 
variation of the transmission metrics during the testbed evolution. Figure 25 presents the results 
from the Find Modeling Configuration block when the length of the spans 2-4 was increased to 
an equivalent of 105 km and consequently, the gain of OAs 3-5. At each step, the module was 
able to explain the increment in the SNR of the lightpath by a reduction in the NF of the related 
OA. For illustrative purposes, the estimated SNR of the lightpath that would be obtained by 
keeping the NF constant is also represented in Figure 25. These two experiments assess the high 
accuracy of the Modeling Config Search for estimating the modeling parameters of the devices. 

The next subsections evaluate the MESARTHIM methodology through simulation. 

Simulation environment 

For the simulation, we selected a German-like network topology with 17 nodes and 26 
bidirectional links (see Figure 26). 136 bidirectional lightpaths, representing all the origin-
destination pairs, were established through the shortest route in terms of hops. Figure 27 plots 
the number of lightpaths that every link in the network is supporting (which is particularly 
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important for failure localization). For the sake of simplicity in the analysis of the results, we 
assume that all signals use the QPSK modulation format. 

The optical data plane was simulated by a GNPy instance. We generated SNR measurements for 
every lightpath by varying every modeling parameter of every intermediate OAs and A/D WSSs 
in the ROADMs in the network, independently. With these measurements, a set of realistic types 
of failures (use cases) affecting optical devices were reproduced by forcing the modeling 
parameters of the selected devices (NF and P-max in the OAs and OSNR in the WSSs) to vary 
over time. From the different variations that might happen, we focus on gradual variations, i.e., 
those soft-failures that can eventually degenerate into hard-failures. Among all possible gradual 
degradations, we focus on the exponential increase (NF) and logarithmic decay (P- max and 
OSNR), since both types of degradations accelerate in time and hence, it is crucial to anticipate 
their detection and localization as much as possible. Finally, variability to the SNR samples was 
added in the form of random noise. 

 

 

Figure 26. Considered optical network 
topology. 

 
Figure 27. Number of distinct routes per link and max 

number of routes for localization. 

 
Figure 28. Modeling Config Search. 

The resulting samples were stored in the simulated control plane and fed the module 
implementing the MESARTHIM methodology. In the case of the SNR- wise Surveillance 
algorithm, the SNR_threshold (line 3 in Algorithm 2) was set to the expected SNR for each given 
lightpath minus a fixed value that exceeds the random variations introduced by the monitoring 
generator. 

The next subsections present the obtained results for the different procedures of the 
MESARTHIM methodology based on this simulation setup. 

Surveillance and Device Configuration Estimation 

Let us first illustrate the convergence of the Modeling Config Search algorithm with an example 
entailing two sets of lightpaths. We are interested in finding the most likely modeling config for 
the OSNR of an A/D WSS and for the NF of an OA (each supporting one of the sets of lightpaths), 
given its monitored SNR. Figure 28 plots the MSE as a function of the configuration value, as well 
as those values explored by the algorithm for the two optical devices. The inset tables specify 
the MSE values, whereby the configuration that gives the minimum MSE is finally selected. From 
these results, as well as from those in the experimental assessment, we conclude that the 
algorithm converges in the whole range of the true soft-failure origin, regardless of the selected 
QoT parameter. 
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We now focus on the evolution of the SNR over time for the defined use cases. The graphs in 
the upper row in Figure 29 present such evolution, where, for the sake of clarity, we plot only 
one sample of the affected lightpath. Note that only the lightpaths affected by the failure will 
experience an evolution in their SNR, whereas the rest of the lightpaths will show no variation 
over time other than a random one plus some uncorrelated spurious measurements introduced 
by the monitoring generator. The time in the graphs is normalized, as the time-scales for the 
considered soft-failures are different, ranging from days to months or even years. The evolution 
of the modeling parameters is shown in the bottom-row graphs, where the actually 
programmed value and the interval of values [max, min] estimated by the Find Configuration 
block is plotted. 

 
Figure 29. Evolution of monitored lightpath SNR against time and estimation of modeling 

parameters. 

 
Figure 30. Absolute and relative modeling parameter estimation error. 

We observe that the range of possible values of the modeling parameters is tighter when the 
value of the parameter deviates from its nominal one. In addition, the range of possible values 
for the modeling parameters is different for the different parameters, being the P-max of the 
OAs the one with the largest range. This might have a clear impact if the detection of the soft-
failure is performed by tracking the evolution of that parameter. Figure 30 complements Figure 
29 by plotting the maximum and average error in the estimation of the modeling parameters as 
a function of the magnitude of the degradation. We observe in Figure 30a that both maximum 
and average P-max estimation errors are high for low degradation magnitudes (15.6% and 7.8%, 
respectively). In contrast, the average error for NF and A/D WSS (Figure 30b-c) are remarkably 
low and almost constant for the degradation magnitudes studied. Figure 30 also confirms the 
observation regarding the error in the estimation of the value of the modeling parameters 
greatly reduces with the magnitude of the degradation, which is a very promising result and it 
can be exploited for soft-failure localization and identification. 
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Some conclusions can be drawn from the results obtained so far: i) the proposed method for 
estimating the value of modeling parameters of the devices has shown remarkable accuracy in 
the experimental tests, which has been confirmed by simulation for all failure use cases; ii) in 
general, the estimation interval is tighter when the impact of the value of the parameter on the 
observed SNR is higher; iii) in the specific case of the maximum power of the OAs, the range of 
values that result in the SNR values observed is large when the observed SNR remains around 
the nominal value. However, when SNR degrades with evident trend, the correlation between 
P-max and SNR becomes larger. 

To help developing intuition about the differences that can be expected by analyzing the SNR of 
the lightpaths and the value of the modeling parameters of optical devices, Figure 29 compares 
the time to detect a degradation by analyzing the measured SNR and the value of the modeling 
parameters. For the sake of simplicity, let us assume that degradation detection is performed 
by threshold crossing; the threshold was set to 1 dB below the nominal SNR value for the 
lightpaths, not below a minimum SNR resulting in a pre-FEC BER over 4∙10-3 for QPSK signals. 
The thresholds related to modeling parameters were defined as a percentage of the variation 
range given by the nominal value and the extreme value. Values are selected to reduce detecting 
false degradations: i) for P-max it was set to 40% in the interval between the nominal value (20 
dBm) and the extreme value (10 dBm) due to the large range of variation observed; ii) for NF of 
the OAs, the percentage was set to 20% in the interval between the nominal (5 dB) and the 
extreme value (15 dB); and iii) for the OSNR of the A/D WSSs, the percentage was set also to 
20% in the interval between the nominal (38 dB) and the extreme value (20 dB). 

With these values, the detection of the degradation in the case of the SNR of the lightpath 
happened at normalized times 0.92, 0.86, and 0.86 for the P-max, NF, and A/D WSS OSNR 
gradual soft-failure use cases, respectively. This contrasts with the detection at times 0.78, 0.47, 
and 0.63 when the analysis was in the value of the P-max, NF, and OSNR of the A/D WSSs, 
respectively, which results in anticipation between 15% and 45%. Note that such anticipation is 
enabled by the different evolution of modeling parameters and their non-linear impact on the 
SNR of the lightpaths. 

Soft-Failure Localization 

The above discussion considered the time for the detection only. Note that soft-failure location 
(Algorithm 4) requires several lightpaths to find the common resources in the network topology. 
When the evolution of the monitored SNR changes suddenly, SNR-wise surveillance (Algorithm 
2) collects enough lightpaths to easily localize the failure; however, under a gradual degradation, 
the lightpaths exceeding the threshold might be not enough for the localization. 

Figure 27 includes a study of the maximum number of distinct routes that need to be considered 
to unambiguously identify every link as responsible for a soft-failure, considering that longer 
lightpaths will be more affected by device degradations. For the study, we selected all the links 
in the network, together with an incremental number of lightpaths selected by their total length, 
and fed Algorithm 4 for the (multiple) soft-failure localization (i.e., 26 soft-failures were localized 
with a single execution of Algorithm 4). For the localization, not only the number of lightpaths is 
important, but also their routes. We repeated the experiments with the lightpaths sorted in 
inverse order, i.e., assuming that shorter lightpaths would exceed the (relative) threshold first. 
The results showed that all soft-failures could be perfectly localized when the resources of the 
two shortest lightpaths were analyzed. 
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Table 10. Examples of Soft-Failure Localization 

Failure in OA in link Frankfurt-Mannheim 

Time 
Degraded 

paths 
Common Resources 

0.86 1 2 TRXs, 2 A/Ds, 1 Link 

0.90 2 2 Links 

0.93 4 1 Link (Failure in Frankfurt-Mannheim) 

Failure in A/D WSS Düsseldorf 

0.86 1 2 TRXs, 2 A/Ds, 1 Link 

0.91 2 1 A/D WSS (Failure in Dusseldorf) 

With the above in mind, let us now show how the SNR-wise surveillance and localization evolves 
over time. Table 10 presents the results from two different failures. The first failure was in an 
OA in the link Frankfurt-Mannheim (supporting 41 distinct lightpaths), and the second in the A/D 
WSS in the Düsseldorf ROADM (supporting 16 distinct lightpaths). For each failure, each row 
shows the detection time when the measured SNR of some new lightpaths is below the 
threshold (bear in mind that the threshold is relative to the expected SNR for that specific 
lightpath). However, the localization of the soft-failure is not successful until just one resource 
(assuming that it is responsible for the failure) can be identified. Such identification happens at 
normalized times 0.93 and 0.91 for the failures in the OA and the A/D WSS, respectively. Note 
that the number of lightpaths needed to localize the soft-failure, although small, adds some 
extra time that could be of paramount importance for the impact on the network. 

In contrast, soft-failure localization under the Modeling-wise approach considers all the 
lightpaths supported by such resource, as it analyzes the estimated evolution of the modeling 
parameters by resource. In consequence, Algorithm 4 under the Modeling-wise approach can 
localize the cause of degradations in their very early stages (between 31% and 49% with respect 
to the SNR-wise approach). 

As a final remark, it should be noted that even though the Modeling-wise approach considers all 
the lightpaths supporting a given resource, unambiguous localization might still not be possible 
if few lightpaths with distinct routes are established. Figure 27 shows, that for some links in the 
considered scenario, unambiguous localization of a soft-failure is only possible when all 
supported lightpaths are analyzed. Therefore, in case that not all these paths are established, 
the localization procedure (Algorithm 4) would be unable to localize the failure. E.g., let us 
consider the soft-failure in the link Frankfurt-Mannheim in Table 10 and imagine that only one 
lightpath is supported by such link. Then, a degradation in that lightpath can be explained by 
degradation in more than one resource. This highlights the need for additional procedures to be 
applied for those scenarios which result in ambiguous localization. 

Identification and Severity Estimation 

Once the degradation has been localized, let us focus on the identification of the modeling 
parameter responsible for such degradation. We assume that the device explaining the 
observed degradation is an OA. According to the defined notation, identification performance is 
clearly dependent on the configuration of all coefficients related to indicator φ. Several 
configurations were tested to find the one giving the desired importance to every component, 
ensuring that parameters with a high indicator are correctly selected, while guaranteeing no 
false positives. Such configuration is <b1, b2, b3, b4, ∆φ, thr> = <20, 10, 2, 1, 5, 30>, which will be 
used hereafter.  

Figure 31 shows the obtained results for a gradual degradation caused by NF, whereas Figure 32 
shows the results for a gradual degradation caused by P-max. In both cases, Figure 31a and 
Figure 32a plot the evolution of the accumulative indicator with time, and the decision threshold 
thr. Both indicators remain clearly under the threshold until time around 0.32, where enough 
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evidence of the cause of the degradation is found. Note that the time of such identification 
represents 32% of anticipation compared to the earliest time obtained for degradation 
detection (at time 0.47) using a threshold on the evolution of the input parameter and 64% 
compared to the earliest detection time using a threshold on the evolution of the SNR. Figure 
31b-c and Figure 32b-c show the computed projections for the two modeling parameters under 
study and for both failures; note that these figures are similar to Figure 22. The projections are 
plotted for a long window (around 0.25 time units) for clarity purposes, although the value used 
for fitting and evaluation was δ =0.03 normalized time units. 
In the case that the failure is a consequence of the NF degradation (Figure 31b-c), we observe 
that the centered projection fc for the NF parameter is highly accurate and clearly between the 
upper and lower ones, which results in the minimum indicator parameter. On the contrary, P-
max indicates an evident but less accurate projection and moreover, fc overlaps with fu, which 
increases its indicator above 5 units from the one of NF. As a consequence of this, P-max is 
selected as a parameter with a high indicator, so its accumulative indicator increased. 
Conversely, in Figure 32b-c the minimum indicator is that of P-max, where there is an evident 
degradation for fl. Note that this indicator is much lower than that computed for NF, where no 
degradation is observed, thus exceeding by far the indicator limit. In conclusion, we see how the 
proposed methodology allows discriminating the actual failing parameter and perform a fine 
failure identification. 

 
Figure 31. NF Gradual Soft-Failure Identification. 

 
Figure 32. P-max Gradual Soft-Failure Identification 

We can take advantage of the identification method to implement an alternative localization 
method that can be applied when not enough lightpaths with distinct routes are established in 
the network. This allows the unambiguous localization of a soft-failure, as previously motivated. 
In this case, we assume that only lightpaths between the two end ROADMs of the link Frankfurt-
Mannheim are established and have considered soft-failures in one of the supporting devices 
(OA, TRX or A/D WSS), in line with Table 10. In this case, we execute Algorithm 6 considering a 
single virtual resource that abstracts the supporting optical device types. The algorithm returns 
the most probable modeling parameter among those of OA, TRX and A/D WSS, which helps to 
reduce the number of devices to be analyzed manually.  

Figure 33 shows the performance of the identification procedure for soft-failure localization. 
Three scenarios are considered for the real cause of the soft-failure: i) gradual NF degradation 
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in an OA (Figure 33a), ii) gradual OSNR degradation in an A/D WSS (Figure 33b), and iii) gradual 
OSNR degradation in a TRX (Figure 33c). We observe that the accumulated score clearly 
increases for the two types of devices that are not the real cause of the failure for all the analyzed 
scenarios. This happens at time 0.3 in all the cases. 

Finally, Figure 34 presents the obtained results for severity estimation for gradual degradation 
of P-max, NF and A/D WSS OSNR as a function of the time. The plots show the evolution of the 
estimated time with the real-time, where the area in grey color highlights the real-time when 
the soft-failure degenerates into a hard-failure ±5%. We observe that the estimated time takes 
a large value when the estimation does not observe a major impact in the selected timeWindow 
for any of the affected lightpaths, and rapidly converges to the real degeneration time. In fact, 
assuming that the severity is accurately estimated after two consecutive executions returning 
estimated times close enough one to the other, anticipation over 42% to the degeneration time 
are obtained, which leave enough time to plan the adequate maintenance operations. 

 
Figure 33. Localization by identifying the Soft-Failure. 

 
Figure 34. Severity Estimation. 

4.1.5 Concluding Remarks 

QoT estimation is typically carried out during the provisioning phase and in-operation planning 
to ensure that computed lightpaths will provide zero post-FEC errors, assuming some values for 
the QoT model input parameters related to the optical devices in the network. In this section, 
QoT estimation was used for the reverse process, i.e., given the real measured QoT of a set of 
lightpaths, we were interested in estimating the value of the modeling parameters of the optical 
devices. 

Because of the non-linear relation between lightpaths QoT and the value of the modeling 
parameters, the ability to estimate the value of such parameters opens the opportunity to 
analyze its evolution, which can be as a result of, e.g., aging, temperature variations, etc. The 
proposed MESARTHIM methodology combines analysis of the evolution of the monitoring QoT 
and their transformation into the estimated modeling parameters space, not only for the 
degradation detection, but also for its localization, identification, and severity estimation. 

After the experimental assessment of the method for estimating the modeling parameters of 
the devices, the MESARTHIM methodology was evaluated through simulation. The methodology 
demonstrated remarkable anticipation in failure detection and localization by analyzing the 
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estimation of the value of the modeling parameters of the devices. A simple example showed 
the reason behind such potentials in the different evolution of the modeling parameters and the 
lightpaths SNR. In addition, accurate cause identification based on the analysis of the projected 
evolution of the modeling parameters was demonstrated, which enabled the estimation of the 
severity in terms of the time when the soft-failure degrades into a hard-failure. Such severity 
estimation allows planning maintenance, as it largely anticipates degradation. 

Table 11 summarizes the main characteristics with pros and cons of the MESARTHIM 
methodology. 

Table 11: Summary of the MESARTHIM Methodology 

Method 
Degradation Detection and Failure 

Localization 
Cause Identification and Severity 

Estimation 

Analysis in the 
lightpaths’ SNR 
space 

• SNR-wise surveillance finds common 
resources in sets of affected lightpaths by 
analyzing its SNR.  

• Analyzes all lightpaths. For failure 
localization, the algorithm needs that 
several lightpaths to be affected. 

• No cause can be identified. 

• QoT can be estimated based on 
the projected evolution of the 
SNR.  

Analysis in the 
devices’ 
modeling 
parameters 
space  

• Modeling-wise surveillance analyzes the 
value of the modeling parameters for all 
network devices. 

• The algorithm detects degradations and 
localizes their sources very ahead in time. 

• Cause identification based on 
the projected evolution of the 
modeling parameter of the 
device where the failure is 
localized. 

• Severity estimation difficult to 
estimate by analyzing the 
evolution of the input 
parameters. 

4.2 RESTORATION 
To meet the stringent demands of the evolving B5G communication traffic, which requires 

networks to support high capacity, low latency, and ultra-high reliability, it is imperative that 

optical networks must ensure effective and reliable data transport mechanisms. One critical area 

highlighted for development is failure management, which is essential because outages in 

optical connections can severely impact numerous users, applications and services. 

Noteworthy is the growing interest in applying ML techniques to automate various control 

operations in optical networks, especially in the area of failure management. Previous research 

has delved into ML strategies that are both proactive (e.g., performance monitoring and failure 

prediction) and reactive (e.g., failure detection, localization, and identification) [Mus19]. 

However, the use of ML, and more specifically Reinforcement Learning (RL), in the subsequent 

restoration process of lightpaths disrupted by network failures remains an underexplored area. 

This gap presents a significant opportunity for advancing the reliability and efficiency of optical 

networks through intelligent automation. 

This section presents the evaluation of a DRL-based agent specifically designed for the 

autonomous restoration of disrupted lightpaths following an optical link failure [Her22].  

4.2.1 RL agent for restoration in Optical Networks 

The optical network is conceptualized as a set of flexi-grid ROADMs connected by C-band optical 

links. When lightpath requests are made, specifying source, destination, and required 

bandwidth or optical spectrum, a control system is tasked with handling resource selection and 

allocation. This process is facilitated by a RSA algorithm, which seeks feasible paths that meet 
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the lightpath requirements while adhering to the spectrum continuity and contiguity 

constraints. 

The RL agent has as its primary function the selection of the optimal restoration sequence from 

a set of candidate solutions provided by the Global Concurrent Restoration (GCR) algorithm 

during a link failure incident [Mar21]. This agent is integrated into a SDN controller, thus having 

access to current network state information such as topology and resource utilization. 

Upon the detection of a link failure, the RL agent retrieves the GCR candidate restoration 

solutions. It then inputs these solutions into its neural network (NN), which evaluates each 

solution based on a combination of features including total restored lightpaths, total restored 

bandwidth, and the number of restored and unrestored lightpaths categorized by their required 

bandwidth in terms of frequency slots (FS). The NN produces an output that represents the 

chosen restoration sequence. The reward mechanism for the agent is directly proportional to 

the amount of bandwidth restored, incentivizing solutions that maximize network restorability. 

The proposed DRL agent for restoration is shown in Figure 35. 

 

Figure 35: DRL Agent for Restoration. 

4.2.2 Evaluation Setup 

Dynamic requests were generated randomly, selecting end nodes for provisioning. The 

bandwidth demands were uniformly distributed among 1, 2, and 4 FSs. These requests arrived 

following a Poisson process, characterized by a mean inter-arrival time (IAT), with the 

connection durations governed by an exponential distribution with a mean holding time (HT). 

The occurrence of link failures was modeled as a Poisson process, with failure inter-arrival time 

(FIAT) and failure durations following an exponential distribution with a failure hold time (FHT). 

A failed link was randomly chosen within the 14-node NSFNET topology shown in Figure 35, 

capable of accommodating 100 FSs. The RSA algorithm then iterated over the k shortest 

candidate paths to find feasible routes for restoration, sorting these paths based on the end-to-

end delay. 

The DRL agent was implemented based on the Asynchronous Advantage Actor Critic (A3C) 

algorithm and underwent training across 2000 episodes, with each episode involving the 

provisioning of 10,000 new connection requests. The agent used its neural network to decide 

the optimal restoration sequence whenever optical links failed. 
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4.2.3 Experimental Results 

The evaluation focused on the restoration capabilities, particularly across different traffic loads 

and failure duration scenarios. An essential aspect of the evaluation was comparing the 

restorability and the BBR of the proposed RL agent against both the GCR heuristic algorithm and 

a sequential approach. 

Figure 36 depicts the DRL agent's relative success in improving restorability and BBR under 

different traffic loads compared to the GCR and sequential approaches. In scenarios with low 

FHT=2 and low traffic loads = 200 Erlangs shown in Figure 36 (a), the DRL agent showcased an 

improvement in restorability over the sequential approach and slightly outperformed the GCR 

method, achieving an average restorability of 0.957 compared to GCR's 0.956 and the sequential 

approach's 0.954. However, when it came to the BBR, the DRL agent only surpassed the GCR's 

performance without outperforming the sequential method. The BBRs achieved by the DRL 

agent, GCR, and the sequential approach were approximately 0.052, 0.058, and 0.048, indicating 

a nuanced outcome, wherein the DRL agent's advancements in restorability did not necessarily 

translate to superior BBR performance across all compared approaches. This may be due to the 

fact that the restorability values are high and similar among the samples used in the agent 

training. On the other hand, for the scenario with high FHT of 32, and a high total traffic load of 

500 Erlangs, the performance of the DRL agent in terms of restorability and the BBR is presented 

in Figure 36(b). In this setup, the DRL agent's restorability is comparable to that achieved by the 

sequential algorithm, with a restorability value of approximately 0.837. The GCR algorithm, 

however, achieves a slightly higher restorability, with a value of around 0.849, marking it as the 

most effective approach in terms of restoring disrupted lightpaths under these specific traffic 

conditions. The BBR values reported for the DRL agent, GCR, and the sequential algorithm are 

approximately 0.135, 0.147, and 0.130, respectively. This performance suggests that while the 

DRL agent manages to exceed GCR's efficiency in terms of BBR, it is not able to surpass the 

efficiency of the sequential algorithm, which remains the most effective method in minimizing 

bandwidth blockages under these conditions. 

 

Figure 36: Restorability and BBR using RL agent, GCR and Sequential Approach. 

By leveraging RL, more efficient pathways for restoring optical network functionality after 

failures were explored, contributing to the overall resilience and reliability of optical 

communication systems in the face of stringent future demands. The proposed RL-based 
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solution demonstrates a capability to slightly outperform traditional heuristic algorithms in 

terms of restorability, indicating its effectiveness in restoring disrupted lightpaths to maintain 

network service continuity. However, when it comes to minimizing the blocked bandwidth ratio 

(BBR), the RL-based approach does not consistently outperform other methods. In some 

instances, its performance is worse compared to these heuristic solutions. This difficulty is partly 

attributed to the simplified system model and the limited number of parameters used to train 

the RL agent. There's an expectation that the RL agent would perform better in scenarios 

involving higher complexity with a larger number of variables. These complex scenarios would 

require understanding and capturing the correlations between various factors to make effective 

restoration decisions. 

4.3 FAILURE RECOVERY IN MANTRA ARCHITECTURES 
The -Metaverse ready Architectures for Open Transport – MANTRA- architecture has been 

defined by TIP, the main Internet Service Providers (ISP). 

This architecture, following a hierarchy for controlling packet optical networks that utilize 

pluggable transceivers, aims to establish a comprehensive reference control architecture for 

multi-layer networks considering the utilization of IP over Wavelength Division Multiplexing 

(IPoWDM) nodes. There have been different approaches how to control MANTRA architectures, 

namely single (packet controller is the only one accessing the IPoWDM node, while optical 

control is solely responsible for managing optical resources (ROADMs, amplifiers etc) and dual 

where the optical parameters are exposed by the node. Figure 37, shows the hierarchical control 

architecture that we have implemented to reproduce the approach defined by MANTRA. 

At the top hierarchical level, B5G-OPEN network planner (NetP) resides that orchestrates the 

network layers. Specifically, it receives on its Northbound Interface (NBI) the user-initiated 

orders (e.g., activation of a new connectivity service) and, through its Southbound Interface 

(SBI), it interacts with the packet SDN Controller (PckC) and with the optical SDN Controller 

(OptC). The PckC and the OptC are based on ONOS. Both of them have been extended with a set 

of REST-base endpoints to enable the orchestration performed by the NetP. Moreover, the PckC 

has been extended with a NETCONF driver for forwarding the packet configuration, including IP 

and BGP parameters received. The IP and BGP configurations received from the NetP toward 

the OpenConfig agent running on the IPoWDM node. For the configuration of ROADMs, in the 

optical domain, the OptC uses NETCONF drivers, build upon the OpenROADM models, available 

in the master ONOS distribution. 
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Figure 37: MANTRA Dual Architecture Implementation, with workflow steps for activating a 

connectivity service. 

The IPoWDM nodes expose the standard OpenConfig model through a NETCONF agent deployed 

within the SONiC system; the emulated ROADMs exposes OpenROADM model using the same 

NETCONF agent implementation. The Lumentum ROADM-20 exposes a proprietary YANG model 

through a built-in NETCONF server. Finally, all the interactions among controllers have been 

implemented using custom-built REST APIs building on top of the APIs natively exposed by 

ONOS. Within the B5G-OPEN project there is other ongoing work for the development of a 

dedicated tool to be deployed on top of the OptC translating the custom-built ONOS REST APIs 

to standard T-API, however this component will be integrated in further work. The developed 

software already produced several patches to the official ONOS distribution and further 

contribution is planned, e.g., the REST APIs extensions for the pluggable configuration. 

Figure 38 display the relevant IPoWDM node architecture. An Ethernet switch runs the SONiC 

network operating system on top of the Open Network Install Environment (ONIE) environment. 

In addition to the default SONiC applications (such as soniccfggen, syncd, swss, pmon, FRR, and 

the Redis database) the system includes additional containerized applications: the NETCONF 

agent and the coherent manager that have been specifically developed for this work. The 

NETCONF agent container is employed for configuring and monitoring optical pluggables. This 

agent utilizes the OpenConfig model for representing hardware components of the box including 

ports and pluggables. To prevent misconfiguration problems when multiple controllers access 

the node (and consequently the NETCONF agent) ownership segregation has been 

implemented, through the Network Configuration Access Control Model (NCACM) solution. 

NCACM has been designed to limit NETCONF access to specific operations and content in a user-

based manner. More specifically, for each configured user (i.e., packet controller and optical 

controller), a set of rules is established within the NETCONF agent. These rules either permit or 

deny operations (such as write or read-only) on specific prefix-based configuration sections. For 

example, considering the Dual approach as defined in MANTRA, the OptC is provided with read-

only rights on the optical parameters of coherent pluggables. Similarly, PckC is provided with 

writing rights on both packet ports and optical pluggables. Thus, the adoption of NCACM is a 

valid and effective solution to control responsibility and preserve confidentiality.  
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Figure 38: MANTRA Dual Architecture Implementation, with workflow steps for activating a 

connectivity service. 

The Coherent Manager container comprises the Common Management Interface Specification 

(CMIS) App and the REST Interface. The CMIS App is an application that utilizes the coherent 

optics Python library provided by SONiC to forward received commands received by the REST 

interface toward the Module State Machine (MSM) and Data Path State Machine (DPSM) state 

machines. Moreover, it is used to read the operational parameters exposed by the pluggables 

(i.e., ESNR, OSNR and received power). The CMIS App directly interface to the OPTOE, which is 

the driver used by SONiC to manage and monitor the coherent pluggable modules. To allow 

other containers/applications to interact with the Coherent Manager, a REST interface is 

exposed. Thus, the NETCONF container, exposing the OpenConfig representation of the device, 

can access the pluggable modules via the REST interface allowing it to configure and monitor 

the optical parameters available in the pluggable modules. 

4.3.1 Common Management Interface Specification (CMIS) for Pluggable Transceiver 

Management 

This section presents the implementation of the CMIS version 5.0 and C-CMIS version 1.1 

interfaces, including their respective regulating finite state machine. The CMIS interface, defined 

by the Optical Internetworking Forum (OIF), is becoming the de-facto standard management 

interface for pluggable modules. It offers a clearly defined mechanism for initializing and 

managing optical (and copper) modules, while also ensuring the ability to accommodate custom 

functionalities when needed. The electrically erasable programmable read-only memory 

(EEPROM) within the pluggable module is organized in pages, each with read and write 

capability. Each page contains a different set of information, such as: module information, 

Versatile Diagnostics Monitoring (VDM), current configuration, and operational state 

parameters. The initialization of the module is represented by the MSM, while the configuration 

is represented by the DPSM.  

The MSM, is depicted in Figure 39 (left). It defines the initialization process between the device 

that hosts the pluggable module and the module itself. Once the pluggable module is inserted 

into the IPoWDM box, the MSN enters the INSERTED state. Consequently, the module is 

powered, and the MgmtInit transition is initiated. During this phase, the module initializes the 

Memory Map to default values and sets up the management communication interface, allowing 
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the host to eventually manage the module. After that, the module enters the ModuleLowPwr 

state, during which the host can configure the module using the management interface to read 

from and write to the management Memory Map. If the operation is successful, the 

PowerPwrUp transition is triggered, and the host is informed that the module is in the process 

of powering up to High Power Mode. However, if it fails, the Resetting transition is triggered, 

clearing the Memory Map, and transitioning back to the INSERTED state. When the MSN reaches 

the READY state, the module is in High Power mode, and the host can initialize or deinitialize the 

Data Path State Machine (DPSM). If the READY state is not reached, the ModulePwrDown 

transition is triggered, and the module returns to the ModuleLowPwr state. DataPatg State 

Machine (DPSM) is illustrated in Figure 39 (right). It defines the host-module interactions 

required to configure the parameters within the module including transmission power, 

frequency, threshold alarms, and more. The module starts in the READY state waiting for a 

configuration request by the host, such as a change in frequency. When a configuration request 

is received, the DPDeinitS transition is initiated. During this phase, the module performs all the 

necessary de-initialization activities on all resources associated with the current configuration 

within the module, and the transmission power is turned off. Once the DP_Init state is reached, 

the DPInit Complete transition is triggered, and the module performs all the necessary 

initialization activities on its internal resources to apply the new configuration. Afterward, the 

module reaches the DP_Initialized state where it is fully operational, initialized, and ready to 

transmit traffic, but it is not powered. Subsequently, the DPTxTurnON transition is triggered, 

and the module is powered. If this phase is completed correctly, the module reaches the 

DP_ACTIVATED state. This indicates that the new configuration has been successfully applied to 

the module, and traffic can now be transmitted and received. Finally, the module is moved to 

the READY state through the Prepared transition, which informs the host that the module is 

ready to handle a new configuration. 

 

Figure 39: Module State Machines (MSM) for the initialization of the pluggable modules 

Coherent CMIS (C-CMIS) 

The Coherent Common Management Interface Specification (C-CMIS) extends CMIS to enable 

the management of digital coherent optical modules. In more detail, C-CMIS provides additional 

parameters relevant to the coherent pluggable in the VDM table. Besides that, C-CMIS defines 

a new set of tables for monitoring and configuring the media lanes, such as Media Lane 

Provisioning and FEC Performance Monitoring.  
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In 5GB-OPEN, the C-CMIS has been used to retrieve the following parameters: received power, 

BER, OSNR, and eSNR. 

4.3.2 Connectivity setup and Failure Recovery in MANTRAS Architectures 

Workflow steps for Connectivity service 

The MANTRAs architectural design, illustrated in Figure 37, shows the workflow steps for 

activating a connectivity service. In particular, the request to establish a layer-2 connectivity 

between the two IPoWDM node interfaces attached to ROADMs has been considered that may 

imply the activation of a new digital signal rate (DSR) connectivity between a pair of coherent 

optical pluggables. When such connection request arrives, NetP performs end-to-end path 

computation across both the IP and optical layers, thus understanding if a new connection in 

the optical layer (i.e., a new lightpath) is required or not. If a new lightpath is required, the 

following steps are executed to orchestrate the connectivity setup:  

a. NetP receives and processes the request;  

b. NetP sends a request to Optc, for establishing a lightpath between two specific 

ROADMs’ ports;  

c. a) The features supported by the pluggables attached to such ports (e.g., modulation 

formats, tuneability range) are communicated by the NetP within the request. Or 

alternatively,  

b) the OptC can dynamically read such information as defined in the Dual MANTRA’s 

design. In our current implementation the NetP only includes the endpoints in the 

request, and the OptC dynamically retrieves the tuneability range of the pluggables;  

d. OptC performs routing and spectrum assignment and configures the lightpath in the 

traversed ROADMs. In BG5-OPEN implementation, OptC uses shortest path routing and 

first-fit spectrum assignment. However, it could apply impairment-aware optical path 

computation, e.g., making use of external tools dedicated to physical impairment 

evaluation and QoT estimation;  

e. Once the lightpath is configured Optc sends notification to NetP including selected 

optical parameters ( i.e.,the frequency slot in the current implementation);  

f. At this point NetP sends layer-2/3 configuration request to PckC, including optical 

parameters to perform pluggable configuration, in BG5-OPEN implementation NetP 

sends a request for an IP link specifying the pluggabble end-points and the frequency 

slot to be used;  

g. PckC performs the actual configuration of the coherent pluggables and layer-2/3 

protocols (i.e., Ethernet, IP and BGP). 

Failure Recovery service 

Within the described control architecture, a failure along one fiber link is considered and three 

different procedures are experimentally compared to better understand the reachable 

performance, in terms of recovery time. The failure happens in the optical layer, but the 

recovery can be performed involving either only the optical layer, only the packet layer, or both. 

1st solution. The first solution (i.e., optical restoration) is purely applied at the optical switching 

layer without the involvement of the PckC. Thus, it only involves the reconfiguration of ROADMs 

while the configuration of coherent pluggables cannot be modified. This implies that the 

recovery path at the optical layer must be suitable using the same frequency slot, modulation 

format and transmission power. The recovery workflow is quite simple, when OptC detects the 

failure. The workflow steps are as follows:   
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a. (OptC computes a new path between the same endpoints, avoiding the failed link and 

utilizing the same frequency slot that was previously used;  

b. OptC re-configures the ROADMs to activate the new path. 

2nd solution. The second solution (i.e., hybrid restoration) involves both the OptC and the PckC. 

This solution typically provides much more flexibility since it allows to change the configuration 

of pluggables allowing the utilization of different frequency slots and modulation format thus 

even enabling the utilization of much longer paths. However, it requires coordination among the 

two controllers after failure occurrence and re-configuration of pluggables, that may require 

several tens of seconds. The recovery workflow is as follows, (after failure detection by the 

OptC):  

a. OptC computes a new path between the same endpoints avoiding the failed link;  

b. OptC re-configures the ROADMs to activate the new path;  

c. OptC communicates to the PckC (through NetP) the new optical parameters to re-

configure the coherent pluggable modules;  

d. PckC modifies the coherent pluggables configuration. 

3rd solution. The third solution (i.e., hybrid protection) is implemented minimizing the 

involvement of the optical layer. It does not require heavy coordination among controllers (i.e., 

only failure notification is propagated) but it does require the pre-provisioning of an optical 

backup path (including pluggables in IPoWDM nodes), thus implying waste of resources when 

the network operates without failures. After failure a occurrence and detection by the OptC, the 

recovery workflow is as follows: 

a. OptC communicates the failure to the PckC (through NetP);  

b. PckC performs a layer-2/3 configuration on working and recovery pluggables so that the 

traffic is automatically redirected toward the pre-planned backup optical path using 

recovery pluggables. This latter step can be implemented in different ways, considering 

two alternatives: 

i. operating at layer-3, the pre-planned recovery path is implemented as an 

alternate BGP adjacency with higher cost, thus upon failure notification it is 

enough to teardown the working pluggables so that the traffic is automatically 

routed toward the backup adjacency;  

ii. operating at layer-2, the backup pluggables are not attached to the VLAN 

switching the traffic, upon failure occurrence the working pluggables are 

teardown and backup pluggables are added to the VLAN switching the traffic. 

4.3.3 Experimental Validation and Results  

Testbed design 

For validation and testing a dedicated packet-optical testbed has been developed, as illustrated 

in Figure 40. It includes two IPoWDM nodes equipped with pluggable transceivers, two emulated 

ROADMs (e.g., OpenROADM NETCONF agents running in dedicated docker containers) and one 

physical ROADM (e.g., implemented using a Lumentum ROADM-20 device). The physical 

ROADM (i.e., the Lumentum) is connected at the first IPoWDM node, representing the ingress 

point of the lightpath. The two outgoing paths, traversing the two emulated ROADMs, are 

combined in a coupler going towards the second IPoWDM node. The traffic is generated via 

Spirent N4U connected to the SFP+ interfaces of the IPoWDM nodes. The two IPoWDM nodes 

are implemented using a single Edgecore switch (i.e., model AS9716-32D with 32 x 400G QSFP-

DD switch ports with a Tomahawk 3 chipset) that has been sliced using two different VLANs. The 
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switch is equipped with a pair of Cisco coherent optical pluggable modules (i.e., model 400G 

QSFP-DD High-Power) that support a transmission rate up to 400 Gbps exploiting 16-QAM 

modulation. The switch runs the SONiC operating system, in addition to the basic SONiC 

components two custom-built docker containers have been deployed on the switch (see Figure 

17): (i) a container implementing a NETCONF server and exposing the OpenConfig model of the 

node to the optical controller; (ii) a container exposing REST APIs endpoints for performing BGP, 

CMIS and CCMIS configurations, as well as, reading operation on CCMIS parameters. 

The control plane is realized by three controllers (as illustrated in Figure 37): the PckC, the OptC 

and the NetP. The OptC controller is based on ONOS software and runs on a workstation 

equipped with Intel i7-8700 12-core 3.2 GHz clock, 32 GB RAM. NetP is java based and runs on 

a VMWare VM with 8 CPUs and 8 GB of RAM. Finally, PckC controller runs on a VMWare VM 

with 8 CPUs and 8 GB of RAM. PckC is in charge to configure the packet domain and the optical 

pluggables interfacing to t e OpenConfig model deployed on top of the IPoWDM nodes. OptC 

controls the ROADMs via NETCONF, exploiting the OpenROADM modeling of the ROADMs 

devices. NetP orchestrates the operations enabling the communication of the optical 

parameters necessary to configure the optical pluggables from the OptC to the PckC. 

 
Figure 40: Top level of Testbed topology for validating connectivity and failure services in 

MANTRA architectures. 

 
Figure 41: Screenshots of GUIs of deployed controllers and hardware devices. 

Figure 41 shows a collection of screenshots and pictures of the control plane tools GUIs and 

deployed hardware. In particular, Figure 41(a) shows the NetP GUI illustrating the overall 

network including IPoWDM nodes and ROADMs; Figure 41(b) and Figure 41(c) respectively 
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report the ONOS GUI of the packet and optical controllers. Figure 41(d) illustrates the deployed 

hardware, i.e., the Lumentum ROADM-20 node degree, the Finisar WSS filter and the EdgeCore 

switch running SONiC operating system. 

Experimental Results 

Reconfiguration time of central frequency. The performance of 400ZR/ZR+ transceivers has 

been first measured in terms of time required to reconfigure the central frequency. Results are 

summarized in Table 12. Specifically, the optical carrier has been moved interacting directly with 

the REST APIs deployed on SONiC. The frequency shifts have been performed considering both 

nearby frequencies and distant frequencies in order to check whether the reconfiguration time 

depends from the frequency gap. The optical configurations have been performed considering 

two types of pluggable transceivers (i.e., two ZR and two ZR+ modules). For each run, two values 

of time have been collected, both time intervals start when the frequency change command is 

issued to the SONiC system; the first time (prompt in Table 12) is the interval from the command 

issue and return the prompt; the second time (laser in Table 12) is the interval form the 

command issue and the signal detection at the RX. 

Considering the two ZR modules, performing a frequency reconfiguration with 2 THz gap 

(passing from 193.0 THz to 195.0 THz) has taken around 10 seconds (10.39 and 9.6 seconds, 

respectively) at the prompt level, while a longer time interval (around 67.6 seconds) at the laser 

level. The reverse operation, passing from 195.0 THz to 193.0 THz, has presented similar time 

for the reconfiguration. Even considering smaller frequency gap (from 193.0 Thz to 193.1 THz 

with 0.1 THz of gap) or bigger frequency gap (from 196.0 THz to 192.0 THz, with 4 Thz of gap) 

has not differently impacted the reconfiguration time.  

Considering instead the two ZR+ modules, the frequency reconfiguration with 2 THz gap (passing 

from 193.0 THz to 195.0 THz) has achieved similar performance in terms of prompt results 

(respectively 9.78 and 9.45 seconds). However, significantly faster performance have been 

experienced considering the optical transmitted signal achieving configuration time around 15 

seconds (i.e., 16.15 and 15.69 seconds, respectively). The reverse operation, passing from 195.0 

THz to 193.0 THz, has presented similar time for the reconfiguration, with the prompt issuing 

time in the order of 10 seconds and a shorter laser activation time (respectively, 15.31 and 13.20 

seconds). Even considering small frequency gap (from 193.0 THz to 193.1 THz with 0.1 THz of 

gap or bigger gap (from 196.0 THz to 192.0 THz, with 4 THz of gap) has not differently impacted 

the reconfiguration time, with similar values collected. 

Further analyzing the results collected using the two classes of pluggable transponders (e.g., the 

ZR and ZR+ modules), it is clear that ZR+ modules guarantee a faster laser activation time. 

Moreover, the table shows that the (re)-configuration time interval does not depend on the gap 

between the starting and stop frequencies. In addition, the collected results show that modules 

of the same type present similar behavior, showing a stable and uniform configuration time. 

Table 12: Tuneability performance of coherent pluggable modules within SONiC IPoWDM box. 

Frequency ZR Sample 1 ZR Sample 2 ZR+ Sample 1 ZR+ Sample 2 

Start  Stop  prompt laser prompt laser prompt laser prompt laser 

193.0 195.0 10.39 67.65 9.60 67.63 9.78 16.15 9.45 15.69 

195.0 193.0 9.67 67.8 9.46 70.58 9.38 15.31 9.46 13.20 

193.0 193.1 9.50 69.43 9.39 69.54 9.45 15.26 9.52 15.70 

193.1 196.0 9.78 68.04 9.47 69.54 9.64 15.66 9.51 19.10 

196.0 192.0 9.47 71.06 9.79 67.34 9.51 15.90 9.52 15.21 
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Estimation of channel bandwidth. The actual channel width generated by the ZR+ modules is 

not explicitly mentioned within the pluggables data-sheet. Thus, to estimate the effective 

bandwidth of the 400 Gbps channel generated by the ZR+ modules using 16-QAM modulation 

format, two IPoWDM through an optical line composed of three amplified spans of 80 Km. A 

Finisar WSS has been used to filter the generated signal and apply symmetric narrow-filtering of 

the channel. More specifically, initially the channel is configured with 100 GHz width, then 

gradually narrowed (i.e., cutting left and right an incremental portion of the spectrum) while 

reading the parameters at the receiver side. The parameters are read using the REST APIs 

deployed on SONiC that interacts with the C-CMIS driver. 

Collected results are illustrated in Table 13, operating an optical channel with central frequency 

195.5 THz. Each row of the table reports the received power, BER, OSNR, eSNR and the 

operational status of the interface in SONiC. From the collected results, it is evident that the 

channel continues to operate also if it is narrow filtered at 60 GHz (e.g., 20 GHz left and 20 GHz 

right). Therefore, considering a flex-grid scenario, significant bandwidth can be saved by 

accurately configuring the optical filters along the path with respect to the nominal value of 100 

GHz. 

Table 13: Transmission performance from CCMIS interface with narrow-filtering. 

Central 
Freq. (THz) 

Bandwidth 
(GHZ) 

Received 
Power (dBm) 

BER OSNR (dB) ESNR (dB) Status 

195.5 100 -16.31 0.00253 29.9 16.6 UP 

195.5 90 -16.31 0.00256 29.8 16.6 UP 

195.5 80 -16.36 0.00257 29.7 16.6 UP 

195.5 70 -16.42 0.00276 29.5 16.5 UP 

195.5 64 -16.54 0.00319 28.9 16.3 UP 

195.5 62 -16.66 0.00359 28.5 16.2 UP 

195.5 60 -16.72 0.00417 28.0 16.0 UP 

195.5 58 -16.88 0.00728 26.6 15.3 DOWN 

195.5 56 -17.03 0.01297 25.0 14.4 DOWN 

 

Recovery time with real traffic. The experiment, which was performed on the testbed shown in 

Figure 37, starts with the connectivity setup and its step reference. In particular, a layer-2 

Ethernet link between the IPoWDM nodes interfaces is requested that triggers the activation of 

a DSR connection between the pluggables using a central frequency of 191.900 THz and a 

bandwidth of 100 GHz. Pluggables are configured for 400 Gbps using 16-QAM modulation 

format. This connectivity is used to transport a 10 Gbps traffic flow generated by the Spirent 

N4U traffic generator/analyzer.  

Starting from this scenario, the recovery procedures are started following the three schemes 

detailed in the failure recovery service Section above. Thus, the failure detection time needed 

by the OptC is always neglected. However, from the experience matured in other experimental 

work, one can estimate such time in the order of 100 ms. Thus, with all the recovery procedures, 

the traffic is disrupted while the re-configuration procedure is on-going, that is measured 

counting the number of lost packets using the Spirent tester.  

Figure 42 presents the obtained results, showing the obtained time distribution over 30 

experiment repetitions. Figure 42(a) refers to the optical restoration procedure. In this case, the 

OptC reconfigures the connection along the longest path keeping the same channel central 

frequency of 191.900 THz. In this case the traffic disruption has an average value of 2.6 seconds. 
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Figure 42(b) refers to the hybrid restoration procedure that implies the re-tuning of the central 

frequency, i.e., traffic is re-routed on the longest path moving the central frequency to 193.100 

THz. In this case the traffic disruption has an average value of 102.6 seconds, this result may 

appear not in accordance with the fact that the experiments related to reconfiguration time of 

central frequency above, show that, using ZR+ modules, the time for performing frequency 

reconfiguration is about 15 seconds. However, this time is measured only at the physical layer 

considering the moment in which optical power is detected on the receiver side. While restoring 

a real traffic flow may imply longer time due to re-alignment needed after frequency change, 

thus leading to the measured values of about 100 seconds.  

Finally, Figure 42(c) refers to the hybrid protection procedure, in which the OptC forwards the 

failure notification to the PckC, which dynamically includes in the traffic VLAN a second pair of 

coherent pluggables that were in hot backup at the IPoWDM nodes. In this case the traffic 

disruption has an average value of 1.8 seconds. The measurements made show that traffic 

recovery in multi-layer networks using IPoWDM nodes is still a critical feature.  

 

Figure 42: Distribution of traffic recovery time over 30 experiments: (a) optical restoration; (b) 

hybrid restoration; (c) hybrid protection. 

All three solutions do indeed present critical issues. Optical restoration provides an acceptable 

recovery time, with the strong requirement to use the same frequency on the backup path. This 

condition is difficult to implement in a real network where, under normal traffic conditions, it 

may be very unlikely to find the required channel end-to-end available. Hybrid restoration is the 

most flexible solution that is certainly the best candidate solution in case of soft-failure, but 

requires unacceptable recovery times in case of hard-failure. Finally, hybrid protection provides 

acceptable recovery time but requires significant network overprovisioning. 
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5 DIGITAL TWIN FOR THE OPTICAL TIME DOMAIN 

Monitoring and real-time data analytics are key enablers for the realization of network 

automation. In particular, AI/ML-based algorithms have been extensively applied to optical 

communications to enhance their overall performance. Applications include identifying and 

predicting optical transmission parameters to mitigate different physical layer impairments, 

including both linear interference, e.g., Amplified spontaneous emission (ASE) noise, and noise 

caused by the Kerr effect. In fact, one of the most active fields of application in optical networks 

is for optical performance monitoring and particularly interesting are those ML-based models 

that combine the characteristics of the physical system and real-time monitoring data to 

produce accurate estimation of NLI noise. Other approaches receiving large attention are those 

exploring deep learning (DL) techniques to extract information from complex, dense monitoring 

data inputs, without knowledge of the physical characteristics. E.g., in optical coherent systems 

with advanced Digital Signal Processing (DSP) techniques, the analysis of In-Phase and 

Quadrature (IQ) optical constellation diagrams as images can be performed by means of training 

convolutional neural networks to estimate the QoT of optical signals. 

AI/ML/DL techniques usually require large data sets for training purposes to produce accurate 

ML models. In addition, precise knowledge of physical input parameters is needed. Examples 

include the length of the optical connection (lightpath) from Tx to Rx and the Tx launch power. 

Although some physical parameters might vary with time, considering them as inputs of ML 

models strongly increases the applicability of those models to real scenarios. In this regard, a 

possible approach is to model individual network elements and concatenate them to create one 

model for the complete lightpath. Note that model concatenation is a common approach, which 

is part of other ML techniques, e.g., AE. 

In this section, we propose a comprehensive solution for in-operation lightpath analysis of IQ 

constellations. Specifically, the contribution is two-fold: 

• A novel network functional architecture is presented. A sandbox domain is used to obtain DL 

models suited for the lightpath under analysis. Models include AEs, statistical distributions of 

IQ constellation points, and DNN-based lightpath metric predictors. The models are designed 

to run at the Rx site, and continuously analyze lightpath’s metrics to compress monitored 

constellation samples and detect potential anomalies. 

• A methodology for constellation analysis based on Gaussian Mixture Models (GMM) 

(supervised) and AE-based (unsupervised) feature extraction is proposed. Moreover, a 

lightpath modelling approach consisting in concatenating DNN models emulating the 

performance of optical components, e.g., ROADMs and optical links including intermediate 

OAs, is presented and used to generate expected constellations and synthetic constellation 

samples. 

Two different use cases of lightpath analysis using the proposed constellation analysis and 

lightpath modelling methodology are detailed. Specifically, path length and power analysis using 

GMM-based and AE-based constellation analysis are proposed. 

5.1 AI-BASED CONSTELLATION ANALYSIS 
Figure 43 overviews the considered network architecture and will be used for describing the 

main workflow; for the sake of simplicity, only the directly involved elements, like a lightpath, a 

node controller and a sandbox are detailed, whereas other components have been sketched -

e.g., the SDN- or omitted to better highlight the key concepts involved in this work. Lightpath i 

is considered as the entity under analysis, which is represented as a sequence of optical 
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components (Tx, ROADMs, links, and Rx) supporting that lightpath. Figure 44 details the internal 

architecture of the sandbox domain and node agents. 

At set-up time, the SDN controller solves the Routing, Spectrum, and Transponder Assignment 

before configuring the involved devices to establish the lightpath. Then, after the lightpath is 

provisioned, the sandbox domain receives the lightpath’s configuration from the SDN controller 

(labeled 1 in Figure 43), including its route on the optical network and some metrics. This 

configuration is used in the sandbox domain to set up an accurate representation of that 

lightpath to be set in the Rx agent (2 in Figure 43). Such representation is defined as a sequence 

of pre-trained DL-based models that emulate the behavior of each individual optical component 

that the optical signal traverses.  

 
Figure 43. Reference network architecture. 

 

 
Figure 44. Details of sandbox (a) and node agent (b). 

The role of the models is different depending on the physical element they characterize (Figure 

44a). For instance, the model for the Tx characterizes the output signal according to its 

specifications, whereas the models for intermediate elements (ROADMs and fiber links) 

propagate forward a set of features related to the signal’s constellation. Specifically, 
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intermediate components introduce distortion on the constellation as a result of LI and NLI 

noise. Finally, the Rx model receives the constellation features and performs additional actions 

before returning the output of the model. Additionally, any relevant change affecting the 

lightpath during its life-time, e.g., path rerouting, needs to be notified to the sandbox, so as to 

adapt the lightpath’s representation and avoid misleading diagnosis due to mismatch between 

the physical lightpath and its models. 

Both constellation and lightpath analysis require from models that characterize the monitored 

lightpath. Thus, anomaly detection based on comparing observed features and expected ones 

coming from lightpath’s models can be carried out at the Rx. Note that this scheme highly 

reduces the amount of data to be sent to the centralized elements (3 in Figure 43), as well as its 

computational demand for real-time data analysis purposes. Once the lightpath is set-up and 

the lightpath models set in the Rx agent, they are used for analysis. With a predefined frequency, 

e.g., every 1s, the Rx samples the received constellation and gathers n IQ symbols. The sample 

is then processed by the constellation analysis block in the Rx agent (Figure 44b). The aim of this 

block is to extract a set of relevant constellation features that facilitates posterior analysis, as 

well as compressing constellation data to be used for multiple purposes, such as model training. 

These features are obtained by means of both supervised and unsupervised statistics and ML-

based techniques (details are given in following subsections). Next, the lightpath analysis block 

processes the features extracted from the received constellation and analyzes key lightpath’s 

configuration metrics, such as length and/or power configuration. The result of this analysis 

produces a diagnostic report highlighting, e.g., whether some of the metrics does not follow the 

expected behavior. The diagnostic report is processed by the manager block that implements a 

set of rules and generates notifications to the SDN controller depending on the diagnosis (4 in 

Figure 43). 

Following the above generic architecture, Figure 45 illustrates two different use cases for 

lightpath analysis. The first use case is devoted to checking whether the real length of a given 

lightpath matches with the expected one (Figure 45a). This analysis is based on the fact that 

both LI and NLI noise increase with path length and additionally, both affect the magnitude and 

shape of the dispersion of the symbols around the expected constellation points. Therefore, 

differences can be found by comparing the features of the observed constellation points, 

extracted with supervised techniques, and the expected ones. A model is used to detect any 

significant difference, as well as to estimate the real length.  

As an example, the received constellation of a 16QAM signal is represented in Figure 45a, where 

a constellation point (3+3i) is zoomed in. External constellation points get more affected by the 

NLI noise since not only their shape becomes more dispersed around the central point as it 

happens in presence of LI noise, but they also become more elliptical, with eccentricity and 

direction of the axes that depend on the traveled distance. Let us assume that the expected 

features characterize a distribution that is larger and more elliptical than the one observed. This 

will be detected by the length analysis module as an anomaly in path length, specifically as a 

length shorter than expected. The reasons behind that anomaly can be multiple, e.g., inaccurate 

lightpath configuration, wrong sandbox domain model configuration, lack of synchronization 

between SDN controller and sandbox after a path rerouting, just to mention a few. Upon the 

notification of the length analysis module, the SDN controller can trigger the needed procedure 

to detect and isolate the actual reason for the detected anomaly. 
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Figure 45. Lightpath analysis use cases. 

The second example explores a different approach to detect anomalies affecting the launch 

power at the Tx side (Figure 45b). Instead of characterizing the gathered constellation through 

features with the distribution of the constellation points, this use case leverages AEs to compress 

constellation samples into a reduced set of latent space features in an unsupervised way. The 

analysis is performed in both forward and backward directions through the AEs to quantify 

relevance metrics at both the latent feature space and the input. This relevance can be tracked 

over time so as to detect any drift or shift directly related to a power anomaly (e.g., power drop) 

in the Tx. Note that an early detection of power anomaly can prevent degradations. 

5.2 CONSTELLATION ANALYSIS AND MODELLING 
In this section, we present the main procedures for constellation analysis and lightpath 

modelling. In the following, we are going to consistently denote X={x1,…, xn} as an optical 

constellation sample consisting of n IQ symbols. Although each symbol xi ∈ X is typically 

represented as a complex number, for the sake of simplicity, it will be alternatively denoted as 

a tuple of real values <xi
I, xi

Q> with the in-phase xi
I and quadrature xi

Q components, respectively. 

Further, a constellation is defined by a set of constellation points P, each identified by its 

expected centroid <pj
I, pj

Q>. 

Supervised and Unsupervised Feature Extraction 
Figure 46 illustrates the feature extraction procedure for a given 16QAM optical constellation 

sample X. The procedure is used to summarize the optical constellation into a number of 

supervised and unsupervised features; it also produces goodness-of-fit (GoF) metrics that allow 

further evaluation of the quality and usefulness of the generated features. 

Let us first focus on the supervised feature extraction approach (Figure 46a). The objective of 

this approach is to generate the set of features (also referred as processed sample) Y that 

summarizes X with a number of clear, unequivocal, and predefined characteristics. To this aim, 

we model the constellation points as bivariate Gaussian distributions. This approach 

characterizes every constellation point p∈P with a two-component vector <µI
p, µQ

p> representing 

the mean position in the constellation and with a three-component vector <σI
p, σQ

p, σIQ
p>, which 

captures the variance and symmetric covariance terms that the symbols belonging to the 

constellation point p experienced around the expected mean. 

Aiming at allowing an accurate fitting of each of the constellation points, especially when LI and 

NLI noise are large and symbols are dispersed far from the expected centroid, we apply GMM 

fitting for multiple and joint bi-variate Gaussian distribution estimation. GMM is initialized to 

find |P| different bi-variate Gaussian distributions whose expected centroids are the ones in P. 

An illustrative example is depicted in Figure 46a, where the inset values in the table are the 

features Y computed from the sample and the level curves depict the bi-variate Gaussian 

distributions. 
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Figure 46. Feature extraction. Supervised (a) and unsupervised (b). 

It is worth noting that by forcing the constellation points to be modelled as Gaussian 

distributions and by selecting the expected centroids in P as initial points for GMM fitting, the 

obtained features are strongly conditioned. In order to estimate how accurate the GMM fitting 

is, i.e., how well they characterize the symbols dispersion around the expected mean, the lowest 

(worst) likelihood value ℒ (in logarithmic scale) for one constellation point is returned as GoF 

metric. The ℒ metric might have different potential applications depending on the specific use 

case. 

In contrast, unsupervised feature extraction (Figure 46b) aims at transforming input sample X 

into a latent sample Z that accurately represents the main characteristics of X without actually 

defining how to achieve such characterization (e.g., without imposing any statistical 

distribution). In this case, we use an AE with 2·n inputs for the I and Q components of every 

symbol in X, followed by a number of hidden layers, each with a number of hidden neurons. The 

last layer of the encoder component contains m outputs and is commonly known as latent 

feature space Z. The latent space is the input of the decoder component, which also contains a 

structure of hidden layers (not necessarily equal to those of the encoder) that lead to a final 

output layer with 2·n values, each corresponding to one of the initial encoder inputs. The AE is 

trained using the mean absolute error as loss function (typical for regression applications) so 

that the error between a given encoder input neuron and its related decoder output is 

minimized. In this way, the encoder component codes input sample X into latent sample Z, 

whereas the decoder reconstructs sample Z into the original feature space. Note that the 

reconstructed sample X* differs from the original one X; such a difference, that can be quantified 

in terms of relative mean square error (rMSE), is used as GoF metric (denoted ε) for 

unsupervised feature extraction. 

DNN-based Concatenation Modelling 
Figure 47 illustrates the proposed approach to build DL-based lightpath models as a 

concatenation of DNN-based component models. As illustrated in the example in Figure 47a, the 

signal crosses three ROADMs (A, B, C) and optical links with different length and number of 

spans. ROADMs are modelled with two WSS, and every intermediate ROADM, except the last 

one before the Rx (drop), includes a booster OA that compensates for WSSs insertion losses. 
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Typically, the insertion losses in the last ROADM are compensated by DSP techniques at the 

digital coherent Rx. The optical links consist of fiber spans and inline OAs that compensate for 

the losses of the fiber spans. We assume that the pre-OA at ROADM’s input is a part of the link 

model (see the insets in Figure 47a). 

The concatenation model abstracting the lightpath in Figure 47a is presented in Figure 47b. In 

this case, the ROADMs and optical links in Figure 47a are modeled using DNNs. The lightpath is 

modeled as an ordered sequence of: i) a Tx model, ii) an add ROADM model representing 

ROADM A, iii) a 240-km link model representing fiber link A-B, iv) a transit ROADM model 

representing ROADM B, v) a 450-km link model representing fiber link B-C, and finally vi) a drop 

ROADM model representing ROADM C. 

The Tx model includes a pseudo-random bit sequence (PRBS) generator used to generate the 

initial optical constellation following a Tx configuration. Such initial constellation can be 

generated using analytical equations, simulation, ML models, etc. Once the initial optical 

constellation is generated, a feature extraction block computes the supervised features Y as 

described in the previous section. 

Models for both ROADM and link components follow a similar architecture. Those models 

propagate feature set Y, modifying the mean and variance of each constellation point according 

to the LI and NLI noise that the physical element introduces. Aiming at reducing the complexity 

of the DNN models, a subset of relevant constellation points is selected as representative of the 

impact of noise during propagation, whereas the rest are generated as a function of the 

propagated points. Hence, we need to first select the reduced set of constellation points P*⊂ P. 

In particular, all the features in Y that belong to constellation point subset P*, denoted as Y(P*), 

are selected. Then, this reduced set of features is propagated through a DNN model specifically 

trained for the component that is represented. The structure of the DNN consists in 5·|P*| input 

and output features (i.e., μ and σ vectors of the selected constellation points), and a number of 

hidden layers with variable number of hidden neurons each. Since the final outcome of the 

model must include the whole set of features, a linear regression model mapping the 

characteristics of the non-selected constellation points, denoted as Y(P\P*), as a function of 

selected ones is used. This model is generic and can be shared between components of different 

types; it is defined by a matrix of linear coefficients β of size 5·|P\P*| × 5·|P*| and an intercept 

vector β0 of length 5·|P\P*|. 

The proposed modelling approach can be also used as a lightweight optical system simulator. By 

generating random samples following the bi-variate Gaussian distributions defined by Y, 

synthetic constellation samples can be obtained. In Figure 47b, such random sampling is 

performed to generate a synthetic optical constellation at the Rx side; however, random 

sampling can also be applied after any component model, thus generating intermediate 

constellations. It is worth noting that the time to generate the resulting optical constellation 

samples (at the Rx and intermediate points) is noticeably short, since it entails propagating 

values through a set of DNNs, i.e., only a very limited number of simple calculations is required. 
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Figure 47. Lightpath example (a) and its proposed model (b). 

5.3 LIGHTPATH ANALYSIS USE CASES 
In this section, we detail the main algorithms to perform the two use cases of lightpath analysis 

sketched in Section 5.1. The proposed algorithms use the feature extraction and lightpath 

modelling procedures detailed in Section 5.2. Firstly, the algorithm to set up the lightpath 

models is presented. 

Lightpath Models Setup/Update 
Upon lightpath provisioning or the modification of the attributes of an already in-operation one, 

e.g., because of rerouting, the models for lightpath analysis need to be loaded in the Rx agent 

(labeled 2 in Figure 43). Algorithm 8 details such procedure, which runs in the sandbox domain 

and is triggered every time a notification is received from the SDN controller with the details of 

the established/modified lightpath (1 in Figure 43). The algorithm receives as inputs: i) the 

description of lightpath R, including its id and the sequence of nodes and links that composes 

the lightpath from Tx to Rx, each with its own configuration attributes; ii) the connection to the 

database of trained models (DB); and iii) a set of configuration parameters.  

The output of Algorithm 8 is the set of models and parameters needed for lightpath analysis at 

the Rx site. These output set includes: i) parameter ℒthr with the minimum threshold to consider 

constellations points as accurate Gaussian distributions, ii) the statistically-based constellation 

analysis (sca) model used for comparing monitored constellations with the expected one in 

terms of supervised features Y; iii) an AE-based (ae) model used for compressing and analyzing 

constellations using unsupervised features Z; and iv) the path metric estimation (pme) model 

used to predict the path length as a function of supervised features. 
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Algorithm 8. Lightpath models setup/update 

INPUT: R, DB, params OUTPUT: < sca, ae, pme, ℒthr> 

1: 

2: 

3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 
19: 
20: 
21: 
22: 

L ← ∅; sca ← ∅; Yhist← ∅ 
for r∈R do 

l ← get(DB[‘component’], r.attributes) 
L ← append(L, l) 

add(DB[‘lightpaths’][R.id], L)  
for i = 1..params.nrep do 

for l∈L do 
if l.type == “tx” then  

b ← l.PBRS(params.n) 
X ← l.generateConstellation(b) 
Y ← GMMfitting(X) 

else Y ←l.propagate(Y) 
Yhist ← Yhist ⋃ Y 

for <Yi, Yj>∈ Yhist do 
val←computeChi2(Yi,Yj) (eq. (7)) 
if sca == ∅ or sca.thr<val then 

sca.ref ← <Yi, Yj> 
sca.thr ← val 

ae ← get(DB[‘AE’], R.tx.power) 
pme ← get(DB[‘predictor], R.tx.power) 
ℒthr ← get(DB[‘GoF’], R.tx.power) 

return < sca, ae, pme, ℒthr> 

After some initializations, the lightpath model L is built by selecting, for each of the components 

in R, the available component model in DB that better fits component’s attributes (lines 1-4 of 

Algorithm 8). After saving model L for further purposes (line 5), a number of random 

constellation samples are generated, propagated through L (see Figure 47b) and saved in a 

temporary data set Yhist (lines 6-13). Yhist is processed in order to build the sca model. To this aim, 

the difference between the features of every pair <Yi, Yj> ∈ Yhist is computed by means of a 

statistical test based on the chi square test (lines 14-15). The proposed chi2-based statistic (chi2) 

is formally defined as: 

𝑐ℎ𝑖2(𝑌𝑖 , 𝑌𝑗) = ∑
(𝑌𝑖(𝑘) − 𝑌𝑗(𝑘))

2

𝑚𝑖𝑛(𝑌𝑖(𝑘), 𝑌𝑗(𝑘))
𝑘=1..|𝑌𝑖|

 (7) 

In consequence, the sca model includes the pair of reference samples <Yi, Yj> that maximizes 

the value of chi2, as well as such maximum chi2 value that will be later used as threshold for 

acceptable difference between samples (lines 16-18). Finally, ae and pme models and parameter 

ℒthr, are retrieved from the set of trained models and eventually returned jointly with sca (lines 

19-22). Although pme can be designed in multiple ways, we consider it as a DNN model that 

predicts the lightpath length as a function of features Y. 

Lightpath Length Analysis 
Once the sandbox manager feeds the Rx agent with updated models, in-operation constellation 

analysis can be carried out.  

Algorithm 9 details the procedure used to detect mismatch between the received and the 

expected constellation in terms of the supervised features Y. Therefore, it requires to process 

the monitored constellation X jointly with models sca and pme, and parameter ℒthr. After some 

initializations (line 1 in Algorithm 9), the supervised features are computed and the logarithm of 

the likelihood is compared against ℒthr to detect whether observed features are unlike to follow 
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a Gaussian distribution (lines 2-4). If so, a new message with the obtained likelihood is added to 

the diagnosis report (line 5). 

Algorithm 9. [Rx] - Length Analysis 

INPUT: X, sca, pme, ℒthr; OUTPUT: Y, diagnosis 

1: 

2: 

3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11: 

diagnosis ← ∅ 
Y ← GMMfitting(X) 
ℒ ← logLikelihood(X, Y) 
if ℒ > ℒthr then  

diagnosis.add(<‘Inaccurate Features’, ℒ>) 
testi←computeChi2(sca.Yi, Y) (eq. (7)) 
testj←computeChi2(sca.Yj, Y) (eq. (7)) 
if min(testi, testj) < sca.thr then 

diagnosis.add(<‘Unexpected Length, test>) 
diagnosis.add(<‘Estimated Length, pme(Y)>) 

return Y, diagnosis 

The analysis continues by computing the chi2 test between the observed features and the two 

reference samples stored in sca. The minimum of both values is compared against the threshold 

(lines 6-8), and, in case of threshold violation, an unexpected lightpath length is detected and 

pme is used to provide an estimation of the real length of the lightpath, which adds relevant 

information to the diagnosis report (lines 9-10). The procedure finishes by returning the 

diagnosis report, as well as the supervised feature sample Y, which can be eventually stored for 

further analysis (line 11). 

Power Anomaly Detection 
Finally, Algorithm 10 performs the analysis of the monitored constellation using the ae model. 

This analysis computes the relevance (importance) h of the ae model inputs and keeps track of 

them in time to detect any strong variation, like drift or shift. To that end, besides the monitored 

sample X and ae model, the algorithm receives the set of historical relevance measurements H 

of such a lightpath. First of all, forward analysis is performed (lines 1-6 in Algorithm 10). 

Specifically, the original sample X is transformed into the latent sample Z using the encoder and 

reconstructed into X* using the decoder. Then, the rMSE between original and reconstructed 

sample is compared against the maximum error computed during ae training to detect whether 

latent features Z are inaccurate. Similarly as for the previous use case, inaccurate features are 

diagnosed if reconstruction error is high. 

Algorithm 10. [Rx] - Importance analysis 

INPUT: X, H, ae; OUTPUT: Z, H, diagnosis 

1: 

2: 

3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11: 

diagnosis ← ∅ 
Z ← ae.encoder.propagate(X) 
X*←ae.decoder.propagate(Z) 
ε←rMSE(X,X*) 
if ε > ae.εmax then 

diagnosis.add(< ‘Inaccurate Features’, ε>) 
h←relevanceBackpropagation(ae, X*) 
H←update(H,h) 
if detectVariation(H) then 

diagnosis.add(< ‘Power anomaly’, h>) 
return Z, H, diagnosis 

Regardless of the result of forward diagnosis, analysis continues by applying relevance 

backpropagation techniques, using the ae model backwards (from X* to X) in order to compute 
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the relevance of every input. By averaging the relevance of the inputs of the same constellation 

points, the relevance analysis vector h is computed, with one value for each constellation point.  

Once the relevance vector h is computed, historical set H is updated (line 8). Note that H consists 

in |P| time series with the temporal evolution of the relevance of each constellation point. Then, 

a procedure to detect variations in time series can be applied to detect variations such as gradual 

drift and instantaneous shift. This variation analysis can either be applied to each of the time 

series independently or the aggregation (sum) of time series belonging to a group of 

constellation points, e.g., outer or inner constellation points. If, regardless of the type, some 

variation is detected, a power anomaly message is generated and added to the report jointly 

with the current measured relevance (lines 9-10). Finally, the diagnosis report and the historical 

relevance set H are returned, jointly with the latent sample Z (line 11). 

5.4 ILLUSTRATIVE NUMERICAL RESULTS 
In this section, we first introduce the simulation scenario and constellation data generated for 

numerical evaluation purposes. Then, the feature extraction procedure is evaluated and next, 

the DNN-based concatenated model for lightpath modelling, as well as the setup algorithm are 

validated. Finally, the lightpath analysis use cases are evaluated. 

Simulation Scenario and Data Sets 
To evaluate the proposed methods for constellation and lightpath analysis, a MATLAB-based 

simulator of a coherent WDM system was developed to generate IQ constellations for a 

16QAM@64GBd signal under different physical path characteristics. Assuming 100 GHz channel 

spacing and full spectrum occupancy, signal samples containing 2,048 symbols and shaped by a 

root-raised cosine filter with a 0.06 roll-off-factor are generated at the Tx side. Then, the signal 

is propagated through standard single mode fiber spans, characterized by optimal power of -1 

dBm, attenuation factor of 0.21 dB/km, dispersion parameter of 16.8 ps/nm/km, and nonlinear 

parameter of 1.14 1/W/km. Spans are modeled by solving the nonlinear Schrödinger equation 

using the well-known split-step Fourier method, whereas ideal inline optical amplification is 

modeled as EDFAs with a noise figure of 4.5 dB, introducing linear noise. Finally, a DSP block is 

considered at the Rx able to perform ideal chromatic dispersion compensation and phase 

recovery. 

Figure 48 shows the two different scenarios configured for constellation data generation. Under 

the single link scenario (Figure 48a), a sequence of spans between Tx and Rx without 

intermediate ROADMs is configured. The first span has a variable length ranging from 40km to 

80km and places an optical attenuator after the Tx to adjust the signal power according to the 

length of the first span, whereas the remaining spans have a fixed length of 80km. We 

considered up to 25 spans, so 3,000 constellation samples with a total length ranging from 80km 

to 2,000km were generated. Moreover, each sample belongs to one of the following 

configurations for the first span length and initial attenuation: i) optimal (80 km, 0 dB); ii) sub-

optimal (60 km, -4 dB), iii) degradation (40 km, -8 dB). These different configurations have been 

devised to introduce power variations that result in small changes in the optical constellations 

without impacting lightpaths’ QoT. In contrast, intermediate ROADMs between Tx and Rx are 

considered under the multiple link scenario (Figure 48b). The WSSs inside the ROADMs are based 

on commercially available ones and modeled. In this case, four different optical link 

configurations in terms of total length and number of spans are considered: 100-km (2x50-km 

spans), 240-km (4x60-km spans), 400-km (5x80-km spans), and 560-km (7x80-km spans). By 

generating lightpaths with hop length (number of links in the lightpath’s route) in [1, 4] and 

combining links with different configurations, 3,000 signals with a total length between 100km 
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and 2,240km were generated. In this work, we use a typical data split of 60%-20%-20% for 

training, testing, and validation purposes, respectively. 

 
Figure 48. Single link (a) and multiple link (b) lightpath scenarios. 

The network architecture in Figure 43 has been reproduced in a Python-based simulator 

implementing its main elements and functional blocks. For model training in the sandbox 

domain, we used sklearn and keras as main libraries for training and testing DNN models. The 

configuration of each DNN model and the selected data set for training, testing, and validation 

is specified in the following subsections. 

Feature Extraction Evaluation 
Let us first focus on evaluating the supervised feature extraction methodology based on GMM 

fitting. For this study, we used the data generated under the single link scenario with the optimal 

power configuration. Figure 49 shows the evolution of the supervised features as a function of 

the total lightpath length. For the sake of simplicity, only one outer (-3+3i) and one inner (-1-1i) 

constellation points are selected. We observe that the average position of constellation points 

(Figure 49a), which has been normalized to the expected centroid, slightly varies with length. 

Nonetheless, the selected outer constellation point shows some remarkable drift in the Q axis. 

Regarding variance terms (Figure 49b), it is clear that they are strongly correlated with length in 

the whole range, whereas the covariance term (Figure 49c) has a significant shift for long path 

lengths. We observe in the figures that clear and strong patterns between the supervised 

features and the length of the lightpath exist, which anticipates good accuracy of the length 

analysis procedures based on these supervised features. 

In addition to the previous results, Figure 49d shows the likelihood GoF metric ℒ, which stays 

above -3.5 for all the considered distances. Then, such value can be selected as ℒthr parameter 

for validation of feature extraction procedures. Moreover, the Henze-Zirkler multivariate 

normality test was conducted for all the samples belonging to the selected dataset. We 

concluded that all 16 constellation points can be accurately modeled as Gaussian distributions 

for all the considered distances, since the obtained p-value of the test always exceeded the 

commonly accepted significance level of 0.05. To better illustrate the valid fitting of constellation 

points as bi-variate Gaussian distributions, Figure 50 zooms in the selected inner and outer 

constellation points of two samples belonging to different lightpath lengths (400km and 

1600km). The computed Gaussian distribution is plotted together with the samples, showing 

different level curves for different variance values. In view of the results, we can validate the 

proposed supervised feature extraction procedure for the characterization of constellation 

points. 
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Figure 49. Supervised feature extraction performance. 

 
Figure 50. Example of supervised feature extraction for two constellation points after 400km 

and 1,600 Km. 

Let us now numerically evaluate the performance of the unsupervised feature extraction based 

on the AE model, which is part of the forward analysis. To this aim, we initially trained an AE 

model with data from the single link scenario and optimal power configurations. Fixing a 

symmetric encoder and decoder configuration, each with 4 hidden layers (1024, 256, 128, and 

64 ReLU neurons), we trained different AEs for a size of latent space Z (m) ranging from 4 to 64 

features. The results in terms of reconstruction error ε for the testing samples are presented in 

Figure 51a. For benchmarking purposes, Principal Component Analysis (PCA) was conducted, 

where the training data set was used to compute the first m PCs that collect the maximum 

information from the original data. Testing data samples were next compressed and 

reconstructed with the selected PCs, thus emulating the encoding/decoding AE network 

components. Supported by the results, we can conclude that 32 latent features are enough to 

reach a negligible (< 2%) reconstruction error. Note that the same number of PCs doubles the 

error of that of the AEs. 

Figure 51b plots the compression rate achieved as a function of the target reconstruction fidelity 

(defined as 1- ε). We observe that the AE clearly outperforms PCA. Note that 99% of 

reconstruction fidelity can be achieved with compressed samples, while reducing in 96% the size 

of original constellation samples. Such an extremely large compression rate is not achieved by 

PCA, which reaches a moderated 60% of compression rate for the same reconstruction fidelity. 

Finally, Figure 51c plots the relation between unsupervised features and path length, similarly 

as for supervised features. For representation purposes, the 32 latent features have been 
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projected into two dimensions by means of applying PCA to the latent space samples. The graph 

shows the position of the samples in the two-dimensional space obtained with PCA, whereas 

path length is coded by a color scale. We observe a clear relation between latent features and 

path length. However, this relation is not as strong as that of the supervised features, which 

validates the latter for path length analysis. 

 

 
Figure 51. Unsupervised feature extraction performance. 

Lightpath Modelling 

For lightpath modelling, we selected the number of constellation points to the minimum 

providing just enough information to capture the overall constellation characteristics; for 

16QAM, specifically, two outer (-3+3i, 1-3i) and two inner (1+1i and -1-1i) constellation points 

were selected. In addition, we considered that both DNN models for the optical fiber links and 

for ROADMs follow the same architecture characterized by: i) 20 input neurons (5 features per 

constellation point); ii) two hidden layers, each one with 12 neurons and tanh activation 

function; and iii) one output layer with 24 neurons to estimate the output features. These 

component models were trained during 5,000 epochs and tested with data from the multiple 

link data set. 

The overall absolute and relative errors for all link configurations, lightpath lengths, and selected 

constellation points are shown in Figure 52, where average and maximum errors of features µ 

(Figure 52a) and σ (Figure 52b) are plotted. We observe negligible µ prediction errors (max error 

< 2%) independently of the link length. In contrast, σ max error is around 30% for low σ values 

although decreases when path length increases, becoming under 15%, which is, in general, a 

good enough performance to validate the models. For illustrative purposes, Figure 52c plots the 

Gaussian distributions for the selected constellation points, obtained with the concatenation 

model and simulator for a 1,600-km lightpath (4 optical links of 400km). For the sake of clarity, 

we reduced the number of level curves and removed colors. It is worth noting that strong 

similarities between both cases are evident. 
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The reconstruction of the features of the non-selected constellation points can be carried out 

by means of the proposed linear model with a reconstruction accuracy of 97%, which indicates 

the proper choice of the selected points. 

 

 
Figure 52. Lightpath modelling performance. 

Length Analysis Use Case 
Let us now analyze the performance of Algorithm 9. Specifically, we focus on the performance 

of models sca and pme. To this aim, the features of the reference samples stored in sca model 

(model-based) are compared to those extracted from the validation samples of the multiple link 

data set (simulator-based). The comparison between model-based and simulator-based 

features was performed using the proposed chi2 test. We first compared the case when the 

simulation and model were configured with the same lightpath length and link configuration. 

For all the combinations, the maximum observed threshold for the chi2 test never exceeded 0.5 

in logarithm scale. Therefore, we use such a threshold for unexpected length detection. 

Next, we compared different configurations of 4-link hop lightpaths to check whether the value 

of the chi2 test serves as a good indicator of misleading length. Figure 53a reports the results, 

where we observe that the selected threshold of 0.5 allows us to clearly distinguish all cases 

when simulation and model were configured differently (orange) from cases with the same 

length (green). Additionally, the impact of considering just slightly different scenarios in the 

simulation and concatenation model was tested. Specifically, a 4-link hop lightpath with 240-km 

links was configured in the simulation, whereas the model was configured with the same 

number of hops and link configuration except for only one of the hops, where a 400-km link was 

selected. The four different positions in the path for the 400-km link were evaluated; Figure 53b 

shows that all cases stayed above the 0.5 threshold, which implies that the small difference was 

correctly detected. Note that localization of the longer link can be done by performing the test 

in the intermediate links. Finally, Figure 53c shows the result of applying the intermediate 

analysis when the 400 km is in the third fiber span. We observe that the link is localized as the 

chi2 test value exceeds the selected threshold when evaluating the features right after the third 

fiber span. 
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The performance of pme was eventually evaluated. The structure of pme DNN was as follows: i) 

20 input neurons (5 features per selected constellation point); ii) two hidden layers, each one 

with 12 neurons and tanh activation function; and iii) one output layer with one single neuron 

that predicts lightpath length. The pme DNN model was trained with the single link data set and 

during 5000 epochs. Figure 54 shows the average and maximum relative estimation error. Here, 

we observe average error below 5% regardless of lightpath length and maximum error under 

10% for lightpaths longer than 100km. These results validate pme as accurate real lightpath 

length estimation. 

 
Figure 53. sca model performance. 

 
Figure 54. pme model performance. 

Relevance Analysis 
Finally, we conducted a numerical study to evaluate the models involved in Algorithm 10. 

Specifically, we focused on illustrating how the ae model can discern between different power 

scenarios and on showing how the input relevance varies with power degradation. 

For power scenario discrimination, let us first inspect the examples of constellation point -3+3i 

for each scenario reproduced in Figure 55. We observe clear differences on the Gaussian 

features Y among power scenarios. Figure 56 shows each of the samples projected on the 

reduced two-dimensional PCA space from the Y space. We realize that the observed differences 

do not support an easy discrimination since the three classes are not separable. Nonetheless, as 

part of the forward analysis, the same projection can be performed using latent space samples 

Z computed with the ae model trained with all power configurations. This AE produces a 

reconstruction error under 2%, similar to the one presented above for unsupervised feature 

extraction. Figure 57 presents the obtained results where the three power scenarios are clearly 

distinguishable. In consequence, we conclude that the proposed AE-based model for 

constellation analysis allows for accurate discrimination of power configurations producing 

small changes in the received constellation. 
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Figure 55. Constellation point -3+3i examples for power scenarios. 

 

Figure 56. Power scenario discrimination with Y. 

 
Figure 57. Power scenario discrimination with Z. 

Regarding relevance analysis, let us compare two different ways to aggregate relevance of 

constellation points: i) quadrant-based, e.g., right-upper and left-bottom quadrants (Figure 58a); 

and ii) energy-wise, i.e., inner and outer constellation points (Figure 58b). In view of the figures, 

we conclude that energy-wise aggregation gives more information, since the relevance of inner 

constellation points clearly reduces when power degrades. Hence, relevance analysis can be 

potentially used to early power anomaly detection, which could eventually lead to hard failures. 

 
Figure 58. Relevance vs power scenarios. 

Table 14. Input relevance variation due to power degradation. 

I/Q -3 -1 1 3 

3 7% -2% -4% -9% 

1 -4% -17% -12% 13% 

-1 -3% -9% 14% -4% 

-3 10% 5% -3% 22% 
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The relative relevance variation per constellation point when moving from optimal to 

suboptimal scenario is detailed in Table 14. Increase/decrease of relevance in more than 5% 

above/below the reference optimal configuration is highlighted in green/red. In line with the 

conclusions from Figure 58, we can easily verify that outer constellation points (mainly those in 

the corners) become more relevant, since more NLI and LI noise is expected under sub-optimal 

power configuration, which makes the shape of outer points more elliptical than those with 

lower energy. Hence, the importance of the symbols on these outer constellation points in the 

latent space is higher, since the overall shape of the constellation is more complex. 

5.5 CONCLUDING REMARKS 
A comprehensive DL-based IQ constellations analysis for in-operation lightpath modelling and 

power analysis has been proposed. DL models propagating IQ constellations features were 

trained in a sandbox domain for modelling optical components, such as optical links, OAs, and 

ROADMs. Then, a target lightpath can be modelled by concatenating specific DL models, to 

reproduce the propagation of IQ constellations from Tx to Rx. Two methods for feature 

extraction were proposed, based on GMM (supervised) and on AE (unsupervised). By using 

those models at the node agent, real-time analysis of the received optical signal can be carried 

out. In addition, constellation samples were compressed into a reduced set of latent space 

features, which remarkably reduces (more than 95%) the amount of data that needs to be sent 

to the centralized controller. 

Two illustrative use cases of lightpath performance analysis were investigated. First, lightpath 

length analysis showed noticeable low error for lightpaths longer than 100km, clearly detecting 

slight differences in lightpath configurations. Next, different power profiles were studied, where 

extracted latent features from AE models showed accurate discrimination in terms of Tx power 

configurations. Finally, a relevance constellation analysis for the AE input parameters was 

carried out, providing clear understanding about which constellation points have larger 

relevance, which might be very useful for different analysis proposes. 
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6 NEAR-REAL-TIME OPERATION 

Autonomous network operation evolves from SDN and promises to reduce operational 

expenditures by implementing closed loops based on data analytics. Such control loops can be 

put into practice based on policies that specify the action to be taken under some circumstance 

(policy-based management), e.g., allocate the capacity of a packet flow so that the ratio traffic 

volume over capacity is under 80%. In packet flows, this ratio is related to the average delay that 

the packets in the flow will experience because of queuing, and thus to the Service Level 

Agreement (SLA) in the case that the packet flow is related to some customer connection. 

Although such policies can be modified, they are purely reactive. Under high traffic variations, 

they might entail either poor QoS (e.g., high delay or even traffic loss) and SLA breaches or poor 

resource utilization, which in both cases represent large costs for network operators. Note that 

policy-based management does not define the desired performance and thus, agents 

implementing those policies are unable to learn the best actions to be taken. Another approach 

for network automation is Intent-Based Networking (IBN), which allows the definition of 

operational objectives that a network entity, e.g., a traffic flow, has to meet without specifying 

how to meet them. IBN implements and enforces those objectives, often with the help of ML. 

In this section, we present solutions for the near-real-time control of network resources, thus 

relieving the SDN controller from such operations. 

6.1 LOW COMPLEXITY OPTICAL POWER OPTIMIZATION 
With the deployment of complete telemetry solutions, time series of measurements performed 

at network elements, such as BER, power, etc., are now customarily transmitted to third entities 

and jointly processed. Besides the obvious usage for troubleshooting, a lot of effort has been 

focused on leveraging this data to refine the knowledge of the network physical parameters, 

and thus to help construct a DT, i.e., a timestamped digital replica of the optical network. 

Operators can leverage the DT to perform several different optimization operations and extract 

the highest possible value from their network at a given time. In recent work [An24], we focus 

on the problem of using monitoring data to a) refine the knowledge, and b) optimize in a closed 

loop, the optical power launched in the fiber, in optical transmission impaired by polarization 

dependent loss (PDL) [Lo21]. The main idea is that the BER of established lightpaths (or the 

equivalent SNR assuming GN) is a random variable due to the joint effect of PDL and random 

phase rotations along the line, with different regimes (i.e., linear or nonlinear) resulting in 

different shapes of the SNR probability density function (PDF). 

In [An24] we extended the work of [Lo21] by numerically exploring ML methods and we 

optimized the input features of the SNR PDFs which are fed to the ML algorithm. A result of this 

investigation was that 70% reduction of the input feature vector can be achieved while reaching 

an accuracy above 98% in all cases, while we also validated the numerically trained algorithms 

on limited experimental samples, resulting in a fair classification accuracy of the transmission 

regime. 
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Figure 59: Setup used to collect the SNR samples. The optical link consists of a repetition of an 

SSMF+EDFA span, followed by either a “regular” or “random” location of the ROADM (two WSS 

cascade). 

In Figure 59 we show the system setup, where the loop between the Rx and Tx is for now 

switched off. We consider that WSSs in ROADMs add PDL, drawn from different distributions. 

Two configurations were investigated, the “regular” and the “random”, as shown by the switch 

in Figure 59. In the regular configuration a ROADM was placed after three consecutive spans 

with PDL values of each element randomly selected from a uniform distribution ranging between 

0.1 and 1 dB. In the “random” configuration ROADMs were inserted randomly after each span 

with a 30% likelihood, with PDL elements drawn from a chi-square (χ²) distribution with three 

degrees of freedom, with a mean of 0.2 dB and a probability of exceeding 0.8 dB set at 1.05%. 

We considered 21 Gaussian-modulated channels transmitted with symbol rates R=49 and 

channel spacings W=50GHz or R=69 Gbaud and W=75GHz. The transmitted power varied in the 

range [-10,10] dBm with steps of 0.5 dB, while the system length was 12, 15, 18 or 21 spans. One 

million SNR samples were collected for each simulation using the model of [Se20] and then PDFs 

were a) normalized to takes values in the range [plim,1] and b) downsampled to a number of bins 

equal to N. Consequently, four ML algorithms have been tested: a) k nearest neighbors (KNN), 

b) random forest (RF), c) support vector machine (SVN) and d) shallow artificial NN (details found 

in [An24]). 

  

Figure 60: (a) RF cross-validation accuracy as a function of probability limit, 𝑝𝑙𝑖𝑚 for variable 

number of bins N. (b) Cross-validation accuracy violin plots for RF, KNN, SVM and ANN. 

In Figure 60a, we plot the cross-validation accuracy for the RF algorithm as a function of plim and 

a variable number of number of bins N, while qualitatively similar results are obtained for the 

other three algorithms (not shown here). We note that for plim<10-1, the cross-validation 

accuracy is almost constant, while in a similar manner, the benefits of increasing the number of 

bins N above 70, does not bring considerable benefits. Using the optimal parameters plim and N 

Random

or RegularSSMF

100  km

ROADM

P
D

L

P
D

L

WSS  outWSS  in

S
N

R

Monitoring

time

action

EDFA

NF =5 dB

WSS in

PDL

TX RX

WSS out

PDL



 D4.3 GA Number 101016663 
 

78 

 

for all algorithms, in Figure 60b we show the cross-validation accuracy violin plots. We note that 

all algorithms yield similar accuracies, with RF being slightly more accurate than the others. 

Finally, we measured the testing time in our server to be 0.369±0.018 sec for KNN, 0.062±0.0002 

seconds for RF, 0.0919±0.0002 seconds for SVM and 0.0012±0.00001 seconds for ANN, 

suggesting that RF achieves a fair tradeoff between accuracy and runtime complexity. 

In [AnJOCN24] we consider again the system of Figure 59, but this time with the closed loop 

between Rx and Tx switched on, to achieve optimization of the transmitted power. To do this 

we propose a low-complexity method based on 2 RF classifiers, one “fine” classifier A and a 

“coarse” classifier B. For A and B, power is classified in three regimes, linear regime (LIN), close 

to the optimal power NLT (MID) and nonlinear regime (NLIN), with the only difference that the 

MID regime is narrower for classifier A compared to classifier B, as detailed in Figure 61a. 

Furthermore, we investigate the usage of statistical moments of the SNR samples as input 

features of the ML algorithms, namely the average μ, the variance σ2, the skewness γ and the 

kurtosis κ. For comparison, we also introduce a naive power optimization method which can be 

briefly described as follows: 1) adjust power at Tx and establish which adjustment direction (i.e., 

increasing or decreasing power) results in an average SNR E[SNR] increase at Rx, 2) continue 

adjusting power at Tx with small steps and measuring E[SNR] at Rx until E[SNR] decreases, 3) go 

one step back and stop power adjustment.  

 

Figure 61: a) Classifiers power ranges and corresponding corrections, with 𝑐, 𝑃 and 𝑝 constants 

and 𝑟 = ±1 b) Cross-validation ML performance for Classifiers A and B using combinations of 

SNR moments (markers) or normalized PDF (lines). c) ML vs. naive optimization in terms SNR 

improvement (upper) and required iterations (lower). 

In Figure 61b, we show the macro F1 cross-validation performance of classifiers A and B as a 

function of different combinations of moments (markers), or using the entire normalized PDF 

(lines), as in [An24]. We note that optimal results arise when using all four input features [μ, σ2, 

γ, κ] but the F1 score is only marginally higher compared to using only [μ, σ2, γ] or [μ, γ]. 

Therefore, skewness and average SNR are the most impactful moments, while, using moments 

generally outperforms using the entire PDF. Finally, in Figure 61c we show the optimization 

results for the two strategies. In the top chart, SNR improvements ΔSNR are plotted against the 

difference between initial power Pin and NLT, showing that SNR improvements are quite similar, 

with the naïve strategy slightly outperforming the ML strategy in the ASE-dominated range. In 

the bottom histogram the number of iterations is plotted against power, illustrating that the 

ML-based strategy offers a significant reduction of the number of iterations, both near and far 

from the NLT. Interpreting this result, we suggest that, near NLT, a minimal number of iterations 

is needed thanks to ML’s ability to efficiently identify the optimal range, while far from NLT, 

fewer iterations are required due to a faster power correction achieved by larger steps. 
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6.2 HASH-BASED TECHNIQUES FOR THE DETECTION OF LARGE FLOWS IN P4 SCENARIOS 
Packet-optical nodes employing open operating systems like SONiC featuring high-speed long-

reach coherent optical pluggables (e.g., 400G ZR+) have appeared in the optical arena to 

challenge classical transponder-based systems.  

In addition to having high-speed pluggables, such packet-optical boxes may include 

programmable ASICs leveraging P4 technology [Bos14]. P4 has demonstrated its potential in a 

wide range of scenarios, including advanced monitoring and telemetry, latency-aware 

scheduling and forwarding, 5G function acceleration, cyber-security, in-network AI, etc. A broad 

summary of these use cases can be found in [Cug22, Cug23]. 

However, monitoring packet streams at line rates equal or above 100 Gb/s is extremely 

challenging, especially given the fact that flow size typically follows a Pareto distribution. This 

means that a few minor flows (the elephants) contribute with the majority of packets and traffic 

in general and vice versa, most of the flows (the mice) contain only a few packets [Fan99, 

Mol11].  

Indeed, the authors in [Jur21] examine a large number of flows in a university campus in Poland, 

and show that almost two thirds of flows contain only 1 or 2 packets. This means that sampling 

packets randomly will very likely not observe a great portion of the packet flows, thus very 

inaccurate to identify flow cardinality or estimate heavy hitters. Thus, sampling is not possible 

and all packets must be inspected to identify all flows, and only hash-based techniques can be 

used since they are compact in memory and processing requirements.  

There exist different probabilistic data structures based on hashing techniques (i.e., filters and 

sketches mainly) that provide accurate summaries (not exact) efficiently in terms of time and 

memory requirements, which can be used to query streams of packets. Some examples of such 

techniques include Bloom Filters, HyperLogLog and Count-Min Sketch and allow: 

• To test if a packet belongs to a group of flows or not, for instance, a black list (using 
Bloom Filters). 

• To obtain cardinality of flows, i.e., how many different flows are traversing a given 
port (using HyperLogLog algorithm). 

• To identify the top-K heaviest flows/heaters, i.e., top 10 heavy-hitters or top-20, etc 
(using Count-Min Sketch or CMS). 

These summaries allow to perform specific operations on all flows at the data plane (in a 

programmable data plane like P4) with reduced memory requirements. In fact, the authors in 

[Nam22] have implemented many of these hash-based algorithms in P4 and made the code 

open-source (SketchLib) for further experimentation by the research community. The next 

sections briefly review the design guidelines for P4 programmable dataplanes willing to include 

CMS in its pipeline to perform heavy-hitter detection and processing. In addition, the use cases 

and applications of CMS in the context of IPoWDM optical networks with P4-based packet-

optical nodes are also studied, along with a real implementation on an Intel-based P4 Tofino 

scenario. 

6.2.1 Packet and flow statistics in aggregated IP nodes 

The authors in [Jur21] released detailed statistics for the research community regarding packet 

traces collected at a university campus in Poland in year 2021. Some of the results observed 

include: (1) average packet size of 870.6 Bytes, (2) Average flow size 68410 Bytes (78.5 packets), 

(3) Flows with only 1 packet: 47.8%, and (4) Flows with only 1 or 2 packets: 65%.  

Another important observation is that flow size follows a Pareto-like distribution, where the 
majority of flows contain very few packets, while very few heavy hitter flows comprise most of 
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the traffic (in terms of packets), confirming past observations in different scenarios [Fan99, 
Mol11]. Following these numbers, Table 15 summarizes both flow and packet rates per switch 
port for a packet-optical node whose ports operate at line rates of 100 Gb/s and 400 Gb/s at 
different loads. 

Table 15. Flow and packet rate per port at 100 and 400 Gb/s (for different loads) 

100 Gb/s 

Load 10% 40% 70% 

Flow rate 18.25 K flow/s 73 K flow/s 127.75 K flow/s 

Packet rate 1.54 M packet/s 6.17 M packet/s 10.8 M packet/s 

400 Gb/s 

Load 10% 40% 70% 

Flow rate 73 K flow/s 292 K flow/s 511 K flow/s 

Packet rate 6.16 M packet/s 24.64 M packet/s 43.12 M packet/ 

 
For instance, taking a 1-sec time window, a 100G port will experience the following traversed 

traffic: 

• 73K different Flows, most of them with just 1 or 2 packets 

• 6.17M total packets on average. 

6.2.2 Count-Min Sketches for traffic flows detection 

The CMS is a data-structure that allows to store the frequencies of each flowID in a compact 

manner [Cor05]. It is very similar to having multiple Counting Bloom Filters. The challenge is 

again to store the frequencies of flows (especially the heavy hitters) where most of them are 

unique. 

 

Figure 62. Example of a CMS structure, d=3 hash functions and W columns 

To do this, the CMS comprises a matrix with d rows (one per hash function) and w columns, as 

shown in Figure 62. When an element arrives (a packet in this scenario), the CMS computes all 

d hash functions (one per row) and increases by one each position in the appropriate column. 

For instance, in the example of Figure 62 with d=3 rows and w=20 columns, let us assume that 

the hashing of packet e gives the following results: h1(e)=10, h2(e)=5 and h3(e)=14. These values 

imply that the positions [1,10], [2,5] and [3,14] in the CMS matrix should be increased by one, 

as shown in the figure. Thus, every single packet traversing the port requires computing d 

different hash functions of it and increasing the corresponding positions [d,hd(e)] of the CMS 

sketch. 

After all elements (packets) are introduced, the CMS can be queried to get an approximate of 

frequency for a particular element. Consider we want to estimate the popularity of element y. 

To do this, the procedure is to hash element y and take the minimum value. Consider for 
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example, that the CMS array returns the following results: h1(y) = 6, h2(y) = 7 and h3(y) = 2, and 

looking at positions [1,6], [2,7] and [3,2] of the CMS matrix, we observe values 5, 7, and 5 again. 

The number of packets arrived so far with flowID = y would then be min(5,7,5) = 5 packets. This 

is an estimate and some errors may have occurred due to hash collisions (as it is probably the 

second counter [2,7] since the other two counters output 5 packets). For this reason, it is 

necessary to accurately dimension the CMS structure for a given expected number of elements, 

that is, sufficient rows and columns. 

In general, CMS is an (e,d) probabilistic data structure, where the result returned is bounded to 

at most 𝜀‖𝐶𝑜𝑢𝑛𝑡‖ with probability 1 − 𝛿, while both e and d can be obtained from the CMS 

design parameters d and w as it follows: 

𝑑 = ⌈𝑙𝑛(1/𝛿)⌉    and  𝑤 = ⌈
𝑒

𝜀
⌉ (8) 

where e is the estimation error. 

Table 16 shows a number of typical configurations of CMS (i.e. d and w) and associated accuracy 

and error. 

Table 16.CMS dimensioning examples 

Hash Acc 256 512 1024 2048 4096 8192 

3 hash 95% 1.1% 0.6% 0.27% 0.14% 0.068% 0.034% 

5 hash 99.32% 1.1% 0.6% 0.27% 0.14% 0.068% 0.034% 

7 hash 99.91% 1.1% 0.6% 0.27% 0.14% 0.068% 0.034% 

9 hash  99.988% 1.1% 0.6% 0.27% 0.14% 0.068% 0.034% 

11 hash 99.998% 1.1% 0.6% 0.27% 0.14% 0.068% 0.034% 

 
The way to read Table 16 is as follows: Consider we are expecting 70,000 flow IDs in a time 

window of 1 second (as an example of 100 Gb/s port), where the largest data flow is expected 

to contribute with 2,000 packets. Then, with probability 0.9991, we are interested in error 

estimated below 1%. Hence we need: 

𝑑 = ⌈ln (
1

1
− 0.9991)⌉ = 7 ℎ𝑎𝑠ℎ 

     𝑤 = ⌈
2.71

0.01
⌉ = 272 𝑐𝑜𝑙𝑢𝑚𝑛𝑠 

(9) 

 

Looking at the table, we decide to use a CMS with 7 hash functions and 512 columns, where 

each column can allocate 8 bits of counting. The total amount of memory consumed is 

approximately 7 x 512 x 8 =28,672bit, i.e., 28Kbit. 

6.2.3 Scenario and experiments 

Network setting and CMS dimensioning 

Let us consider a monitoring time window of 0.1 seconds, where a blank CMS is zeroed at time 

t0=0 and is populated with the number of packet arrivals until tw=0.1s. Following Table 15 (100 

Gb/s, 40% load), we should expect around 7,000 different flows whose size follows a zipf 

distribution. In this regard, we have simulated a packet trace with N=7,000 different flow IDs 

and packet sizes following a zipf distribution with scale a=1.1 (following the examples of [Her19]. 

This means that the k-th flow has a frequency fk following: 
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𝑓𝑘 =

1
𝑘𝛼

∑
1
𝑛𝛼

𝑁
𝑛=1

,    𝑘 = 1, . . . , 𝑁 (10) 

 

 

Figure 63. Flow-size distribution: Zipf-like CDF 

As shown in Figure 63, the largest flow contributes with 15% of the total traffic while the top-20 

heaviest hitters comprise 49% of the total traffic (almost the same as the other 6,980 flows). In 

this scenario, identifying the top-20 flows allows operators to take decisions regarding their 

treatment, i.e., using different optical bands or alternative routes for load balancing and QoS 

guarantees. 

  

Figure 64. CMS accuracy at estimating top-20 heavy-hitter flows for different configurations of 

CMS sketch: (left) d = {3,5,7} hashes and W=64 columns and (right) d = {3,5,7} and W=256 

columns 

Figure 64 further shows the estimated flow size (in no. of packets) for the top-20 heaviest hitters 

for different CMS configurations, i.e. values of d = {3,5,7} hashes and w={64,256} columns. 

6.2.4 Experimental validation 

The CMS-based solution has been validated using a network switch, equipped with P4 ASIC, 

designed for data center operations and potentially suitable for IPoWDM implementations (as 

shown in Figure 65. The traffic flows have been generated using a Spirent N4U. The P4 
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implementation uses five hash functions on the IP source address, each one producing a result 

between 0 and 4,096 bit (=212), while the total CMS occupies one register of size 65,536 bit. 

In a first experiment, with the aim of collecting baseline performance, the traffic is sent from 

one source to one destination host, at a maximum rate of 9.85 Gb/s over a 10G port with fixed 

packet size of 512 bytes. The experienced latency to traverse the switch (including hashing and 

CMS processing) is 0.95 ms. Then, traffic is generated by 5 different sub-networks each one 

comprising 256 hosts (i.e 1,280 IP source addresses) that send traffic to another destination sub-

network comprising 256 hosts. The average latency to traverse the switch interconnecting both 

source and destination subnetworks is again 0.95 ms. This values slightly increases to 1.35 ms 

for packet size values of 1,024 bytes. Thus, following the implementation of the CMS in a real P4 

ASIC switch, we observe that every single packet must traverse all the stages in the pipeline of 

the P4 implementation, resulting in a total latency that varies between 0.95 ms and 1.35 ms of 

processing time. 

 

Figure 65. Experimental setup in lab 

6.3 AUTONOMOUS CAPACITY OPERATION 
With the deployment of network slicing and the support to time-sensitive applications, the flow 

capacity autonomous operation (hereafter referred to as CRUX) focuses on answering a major 

problem that network operators are facing nowadays: how to allocate the right capacity to every 

traffic flow, so as to provide the desired QoS (e.g., by preventing traffic loss and ensuring a given 

maximum average delay), while minimizing overprovisioning (i.e., capacity–traffic). Although 

many ML techniques could be potentially applied for the autonomous capacity operation of 

traffic flows, in this section, we rely on RL. Several works have proposed the application of RL 

algorithms for autonomous network operation, e.g., RL-based algorithms running in the SDN 

controller can be used for dynamic lightpath provisioning or for autonomous bandwidth 

allocation in the context of multilayer optical networks. 

One of the key issues in the previous works is the time needed to learn optimal policies, as 

exploration entails low-reward decision making (i.e., far from optimal operation). In view of this, 
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the performance of RL methods is typically evaluated after some training phase, i.e., when 

reward achieves a stationary behavior. However, a subject that is poorly or not even considered 

so far is when RL algorithms need to operate before they are properly trained. Note that this 

happens in our case, as the actual characteristics of the traffic flow are unknown until it is 

provisioned. Moreover, it is not realistic to assume, in general, the same conditions during 

training and operation phases, due to mid/long-term traffic evolution, which makes it difficult 

to reproduce highly accurate operation conditions during training. To solve these issues, a 

general learning lifecycle can be used that included both offline training (e.g., in a sandbox 

domain) and online learning, in the context of supervised ML, with the objective to accelerate 

autonomous operation by deploying accurate models that are firstly trained offline and fine-

tuned while in operation, thus adapting pre-trained models to actual in-field operation 

conditions. 

In this section, we apply the main lessons learnt from the previous works to IBN agents based 

on RL. We assume that a packet flow (alternatively, referred as traffic flow or simply flow) 

conveying traffic with unknown characteristics is established and the allocated capacity needs 

to be set to ensure the required QoS (from the set-up time), while minimizing resource 

utilization. To this end, a policy-based management is used at the set-up time to start operating 

the capacity of the flow; meanwhile, traffic measurements are collected to characterize the 

traffic. Note that policy-based operation can be highly reliable, as it is based on specific rules 

that can be defined and understood by human operators. However, such an operation usually 

obtains poor resource utilization. Therefore, it would be useful to substitute policy-based 

operation by an RL model as soon as possible. To that end, pre-trained generally applicable 

models for the partly observed traffic characteristics are loaded and the RL algorithm starts 

operating. A per-flow algorithm supervises the performance of the RL algorithm and tunes 

model parameters to ensure the required QoS. Once enough traffic measurements are available, 

offline training is carried out in a sandbox domain to produce a specific model well-suited for 

that particular traffic flow, which then substitutes the generic one. Since the traffic 

characteristics can change over time, analysis must be continuously performed to detect them 

and change the operating model when needed. By iterating that cycle, the proposed RL agent 

will be able to adapt to traffic changes that would otherwise degrade performance. 

6.3.1 The Flow Capacity Autonomous Operation (CRUX) Problem 

Flow Capacity Autonomous Operation 
Let us start by analyzing the result of the autonomous capacity operation of a traffic flow. A flow 

manager might collect monitoring data from the network and expose some interface, so an RL 

algorithm can take action. For illustrative purposes, Figure 66 shows a typical RL framework, 

where the learning agent is separated into two different blocks, the learner and the agent. 

Let us assume that the monitoring data include the byte count since the last monitoring sample 

(amount of traffic) and the actual capacity allocated to the flow. The actions to be taken are 

related to the actual capacity allocated to the flow, which can be increased or decreased as 

needed with some granularity to meet the required QoS. For instance, a customer connection 

can manage the capacity of the flow with granularity 1 Gb/s by configuring some packet node, 

whereas in a virtual link supported by the optical layer, the capacity can be increased/decreased 

by establishing or tearing down parallel lightpaths, each with a capacity of 100 s Gb/s. It seems 

clear that the time to change the capacity is also different, ranging from seconds to minutes. 

The RL algorithm should then decide the capacity to be allocated to the flow to absorb variation 

in the traffic from one monitoring sample to the next, plus the time to increase the allocated 

capacity, with the objective to avoid any traffic loss and ensure some additional QoS metric. 
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Then, the traffic variation becomes a major feature for a flow, together with the traffic pattern, 

i.e., the evolution of the mean traffic with time. 

This approach can provide excellent performance once the policies that avoid traffic losses meet 

the desired QoS, and minimize overprovisioning are learned; however, online learning of such 

policies requires time. In addition, there are several issues that can impact the aforementioned 

online learning performance, e.g., (1) changes in traffic variability might produce loss before new 

policies are learned; (2) smooth model fine tuning could not be enough to mitigate persistent 

errors in taking some specific actions; and (3) online learning tends to forget valuable learning 

in the long run, thus reducing the model’s accuracy. 

 

Figure 66. Flow capacity autonomous operation. RL framework with learner, agent, and 
environment. 

Figure 67a represents a possible evolution of the traffic variation (the traffic pattern is omitted 

here for simplicity) and the obtained performance—overprovisioning, traffic loss, and some 

other QoS metric. The path supporting the flow is established at time t0 and the desired QoS is 

specified, so the RL algorithm needs time to learn the traffic variation (and the traffic pattern); 

meanwhile (until ta in Figure 67a), poor performance, including traffic loss, can be expected. 

Once a good model is obtained, it is expected that an RL algorithm can provide the target 

performance. However, a steep change in the variation of the traffic (times t1 to t2) can impact 

the performance until the new variation is learned. Nonetheless, it might happen that the 

performance does not converge to the desire level even after learning the new traffic variation. 

It seems clear that the above behavior is unacceptable for network operators, as it would 

provide poor performance and might incur penalties due to SLA breaches. Specifically, it seems 

of paramount importance to start the operation with already trained models. To that end, an 

initial model can be trained offline using a network simulator in a sandbox domain. Once in 

operation, the model will be improved by the online learner. However, there are traffic 

characteristics, e.g., traffic pattern, that are observed after a long period of time, e.g., several 

days. Therefore, some alternatives are needed to operate the flow during that initial time. 

Our solutions go beyond training offline and propose implementing offline–online learning 

cycles to deal with large changes in traffic flow, i.e., to provide guaranteed performance during 

the whole lifetime of the traffic flow (Figure 67b). Specifically, (i) a policy-based management 

State function Reward function

Action

Reward

State

Models

Buffer
Online Learner

Action
Model

Updates

Environment

Agent

Learner

Flow

Monitoring Capacity

Flow Manager

Required CapacityTraffic, 
Capacity

RL-based Operation



 D4.3 GA Number 101016663 
 

86 

 

implemented as a self-tuned threshold-based algorithm is in charge of managing the flow 

capacity during the time immediately after the path is set up (Phase I: time interval [t0, ta’], 

where ta’-t0 should be short, e.g., 1 h). That algorithm tunes a threshold for the flow capacity 

and accurately determines the traffic variation. This approach enables dynamic flow capacity 

allocation by fixing the right values for the threshold that minimize overprovisioning. However, 

avoiding traffic loss and guaranteeing that the required QoS is met is not a straightforward task, 

as it depends on the variance in the traffic flow—defined as the difference between maximum 

and minimum amount of traffic during some period. Therefore, during this period, the threshold 

is set conservatively to avoid underprovisioning (i.e., traffic exceeds capacity, and some traffic is 

loss) at the expense of large overprovisioning. (ii) Once the variation of the traffic has been 

determined, a pre-trained generic model can be used for flow operation (Phase II: time interval 

[ta’, tb’]). The model is general as it has been pre-trained assuming a given traffic pattern, e.g., 

sinusoidal with daily periodicity, but supporting the measured traffic variation. Once in 

operation, the pre-trained model starts to fine tune with the observed samples. (iii) Once 

enough measurements are available to determine the characteristics of the flow, including the 

traffic pattern, a specific model can be trained in a sandbox domain by using a simulator set to 

operate at time tb’ (Phase III). That model should improve the performance or be easier to 

operate than the pre-trained one. (iv) Assuming that the traffic pattern does not change, any 

change in the traffic variation that cannot be absorbed by the current model can trigger 

returning to Phase II for more intensive parameter tuning for the new traffic variation, while a 

new specific model is trained and is set to operate at time tc’ (Phase II—Phase III cycle). 

  
Figure 67. Operation lifecycle. (a) Online learning RL operation. (b) Offline training with online 

fine tuning RL operation. 

2.2. Proposed Architecture 
This work extends the basic RL-based flow capacity operation (Figure 66) and proposes a scheme 

based on (Figure 68): (i) analyzing the traffic to obtain meaningful traffic characteristics; (ii) 

making decisions regarding the allocated capacity when no model is in operation (Phase I); (iii) 

selecting pre-trained models that fit with the observed traffic characteristics; (iv) training new 

models in a sandbox domain (offline learning), where real traffic measurements are used to 

generate traffic in a simulation environment and the QoS can be realistically estimated; a replica 

of the RL algorithm in operation is used here for training new models; and (v) once accurate 

models are obtained, they are used for flow operation and will be progressively fine-tuned 

online. As in Figure 66, a Flow Manager collects monitoring data from the forwarding plane and 

enforces flow capacity. 
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The models include some parameters that need to be tuned as a function of the traffic, to 

provide the desired performance while meeting the required QoS. Such parameter tuning can 

be carried out during offline learning, as well as during online operation to deal with small traffic 

changes. Based on the analysis of the traffic and the reward, the Analyzer block decides when 

to tune parameters and when to update the model with an offline learned one (labeled Set() in 

Figure 68) to meet the given QoS. Note that both parameter tuning and the offline–online cycle 

can be completed several times during the operation to improve the learned models, which will 

also enable adaptability to changes. 

 

Figure 68. Extended architecture for flow capacity autonomous operation w/ offline learning. 

The next section details the RL approaches used to solve the autonomous flow capacity 

management problem, CRUX. 

6.3.2 CRUX Problem Definition and RL Methodology 

This section formally defines the CRUX problem, and introduces the main parameters and 

variables used hereafter. Next, it introduces the methodology to solve the problem using RL, 

and finally defines the different RL approaches under study. The used notation is summarized in 

Table 17, where parameters and variables are defined. 

Table 17. Notation - Autonomous Capacity Operation. 

Capacity and QoS Params for the Flow 

zmax Maximum capacity (Gb/s) 
dmax Target maximum delay (s) 

l* Optimal load (unleashing dmax) ∊ [0, 100]% 
qa QoS Assurance (%) 

Traffic and Capacity 

xmax(t) Maximum traffic at time t (Gb/s) 
xvar(t) Traffic variation at time t (Gb/s) 
z(t) Capacity allocated at time t (Gb/s) 
o(t) Capacity slack/surplus at time t (Gb/s) 
y(t) Overprovisioning margin (Gb/s) 
ρ Traffic variance multiplier 
b Granularity of capacity allocation (Gb/s) 

w(t) Traffic loss margin (Gb/s) 

Autonomous Capacity Allocation 

a(t) Action time t (b/s) 
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na Number of discrete actions 
s(t) State at time t 
ns Number of discrete states 

r(t) Reward at time t 
k Threshold-based scaling factor 
βi Reward function coefficients (≥0) 

Problem Definition and Basic Modeling 
Let us consider that the autonomous flow capacity management problem is solved periodically, 

when a new set of measurements, statistics, and parameters for the traffic flow x are collected 

and computed. Along this section and the following, we adopt the informational representation 

of time, where t represents a point in time that refers to the time interval [t - 1, t). Specifically, 

x(t) represents the traffic measurements collected in [t - 1, t), and statistics, such as the 

maximum (xmax(t)) and variation (xvar(t)), summarize traffic dynamicity during that time interval. 

Additionally, decisions made at time t, e.g., the capacity to be allocated (z(t)), consider data that 

arrived up to time t. 

The main objective of the CRUX problem is to find the optimal (minimum) capacity z(t) at time t 
that satisfies a desired QoS. In this work, we assume that that the QoS is defined by a desirable 
maximum end-to-end delay dmax; this also entails that packet loss is not tolerated during flow 
operation. 

Without loss of generality, we assume that the delay can be modeled as a function of the traffic 
volume, the allocated capacity for the flow, the load (ratio traffic/capacity), and other 
components such as the transmission delay (load–delay models). Such load–delay models can 
be obtained during the commissioning testing phase using, e.g., active monitoring techniques. 
Once the model is available, a target load l* unleashing the target maximum delay dmax can be 
selected. Figure 69 illustrates an example of a load–delay model, where dmax has been selected 
to a value where queueing delay becomes the predominant delay component, e.g., for l* = 80%. 

 
Figure 69. Load-delay model example. 

A policy (threshold) -based approach can be used to make decisions from the currently available 

monitoring data, as defined in eq. (11), where k is a constant factor that is related to the traffic 

dynamicity and variability; k needs to be tuned to guarantee the required QoS. However, finding 

the proper value of k is not a straightforward task: if the value of k is high, QoS is ensured at the 

cost of high overprovisioning, whereas if the value of k is low, QoS requirements might be not 

met. In addition, decisions are reactive, so altogether, sub-optimal solutions are usually 

obtained. 

𝑧(𝑡) = 𝑘 · 𝑥𝑚𝑎𝑥(𝑡) 𝑙
∗⁄  (11) 

The optimal capacity allocation to the CRUX problem requires knowledge of the expected traffic 

to allocate the capacity of the flow at time t-1 to the value that fits the expected maximum load 

for the period [t-1, t) (proactive decision making), i.e.: 
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𝑧∗(𝑡 − 1) = 𝑥𝑚𝑎𝑥(𝑡) 𝑙
∗⁄  (12) 

In the case that the capacity allocation is not optimal, some capacity slack / surplus (o) will exist, 

which can be formally computed at time (t) as follows: 

𝑜(𝑡) = 𝑧(𝑡 − 1) − 𝑥𝑚𝑎𝑥(𝑡) 𝑙
∗⁄  (13) 

Figure 70 sketches an example of a traffic flow x(t) for which some capacity allocation z(t) is 

required. In the figure, the optimal capacity z*(t) that should be allocated at time ti-1 is shown. 

The different colors provide a visual representation of the values of o(t). In particular, two 

different sub-optimal capacity allocations can be distinguished (see labels in Figure 70a): i) if z(t) 

> z*(t) (i.e., o(t)>0), QoS requirements are met at the expense of an excess of overprovisioning; 

ii) if z(t) < z*(t) (i.e., o(t)<0), QoS requirements are violated. 

 
Figure 70. Capacity allocation definition (a) and evolution (b). 

The width w(t) of the high delay area is formally defined as a function of the maximum traffic in 

eq. (14). Therefore, traffic loss appears if o(t) ≤ -w(t). 

𝑤(𝑡) = 𝑥𝑚𝑎𝑥(𝑡) ∗
1 − 𝑙∗

𝑙∗
 (14) 

It is worth noting that the quality of a solution taken at time t - 1 can only be evaluated at time 

t, which motivates the use of RL to learn the optimal policy that allocates the minimum value of 

z(t) to meet the QoS requirements. The details of the RL-based methodology are presented in 

next subsections. 

Generic RL-Based Methodology 
Figure 71 illustrates the RL workflow, where the main three elements involved are represented, 

namely: (i) the learner in charge of learning the optimal policy; (ii) the agent in charge of taking 

actions to adjust the capacity allocated to the flow; (iii) the environment adaptation module in 

charge of implementing and evaluating the actions taken; and (iv) the flow manager, which 

enforces the capacity and collects traffic measurements. Three time periods are specified, from 

t0 to t2; let us assume that some initial policy model has been set in the agent before operation 

starts at time t0, when the agent applies the first action a(t0). 
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Figure 71. General RL workflow. 

For the sake of simplification and to reduce complexity, action a(t) is defined in eq. (15) as the 

differential capacity with regard to the current one. Actions are processed by the environment, 

which computes the new capacity z(t) to be allocated. 

𝑎(𝑡) = 𝑧(𝑡) − 𝑧(𝑡 − 1) (15) 

The flow manager periodically sends traffic monitoring data to the environment, which 

processes them at the end of every time interval to compute state s(ti) and reward r(ti). Upon 

receiving the state, the agent finds the action a(ti) to be taken with the current policy. In 

addition, the learning process uses state, reward, and action to improve the model, which is 

updated in the next time interval. The state function s(t) is defined in terms of o(t) normalized 

by a parameter y(t) (eq. (16)(17)), which is conveniently set up using parameter ρ to absorb the 

traffic variation observed in the flow (eq. (17)). 

𝑠(𝑡) = 𝑜(𝑡)/𝑦(𝑡) (16) 

𝑦(𝑡) = 𝜌 ∙ 𝑥𝑣𝑎𝑟(𝑡) (17) 

As for the reward r(t), the objective is to minimize overprovisioning, without providing high 

delay. To ensure that, the higher delay must be obtained by producing some overprovisioning. 

To that end, we have defined a piece-wise function with four different regions in the range of 

o(t), representing the sub-optimal cases. Such division allows for individual modes of operation 

that correspond to an adequate reward in each case. The reward function r(t) is formally 

expressed in eq. (18) and illustrated in Figure 72. The first and second components of r(t) 

penalize traffic loss and high delay, respectively. Both components are linear functions of o(t), 

where coefficients β1 and β2 can be tuned to penalize traffic loss and high delay. The third 

component gives the maximum reward, which is slightly shifted to the positive values of o(t) to 

reduce the risk of QoS violation. This segment is concave quadratic with regard to the relation 

o(t)/y(t), with the maximum value weighted by coefficient β3. Finally, overprovisioning above 

y(t) is linearly penalized by coefficient β4. 
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𝑟(𝑡) =

{
 
 

 
 
𝛽1 · (𝑜(𝑡) − 𝑤(𝑡)) + 𝛽2 · 𝑤(𝑡), 𝑜(𝑡) < −𝑤(𝑡)

𝛽2 · 𝑜(𝑡), −𝑤(𝑡) ≤ 𝑜(𝑡) < 0  

𝛽3 · (1 −
𝑜(𝑡)

𝑦(𝑡)
) ·
𝑜(𝑡)

𝑦(𝑡)
, 0 ≤ 𝑜(𝑡) < 𝑦(𝑡)

−𝛽4 · (𝑜(𝑡) − 𝑦(𝑡)), 𝑜(𝑡) ≥ 𝑦(𝑡)

 

(18) 

 

Figure 72. Reward function vs. capacity slack/surplus. 

Specific Adaption of RL Approaches 
As introduced in Section 1, three RL methods are considered to solve the CRUX problem, namely: 

(i) Q-learning, (ii) D3QN, and (iii) TD3. 

For each method, the main adaptation of the generic problem definition is to discretize state 

and action spaces. Q-learning requires discretizing the continuous state function s(t) in eq. (16) 

into a number of discrete states (ns). Such discrete state function s’(t) can be formally expressed 

as eq. (19). Discrete states 0 and ns - 1 indicate underprovisioning and overprovisioning above 

margin y(t), respectively, whereas the rest states ns - 2 are used to evenly discretize the 

overprovisioning below margin y(t). 

𝑠′(𝑡) = {

0, 𝑠(𝑡) < 0
⌈(𝑛𝑠 − 2) · 𝑠(𝑡)⌉, 𝑠(𝑡) ∈ [0,1]

𝑛𝑠 − 1, 𝑠(𝑡) > 1
 (19) 

In addition, Q-learning and all DQN variants require a discrete space of na actions. Let us define 

a’(t) as the set of discrete actions, where a discrete action is defined by an integer number of 

units of capacity b to update (add or subtract) the current capacity. The discrete set of actions 

that depend on both na ∊ 2 * ℕ - 1 (natural odd number) and b can be formally defined as: 

𝑎′(𝑡) ∈ {𝑏 · 𝑖, 𝑖 ∈ [−
𝑛𝑎 − 1

2
,
𝑛𝑎 − 1

2
]} (20) 

Table 18 summarizes the main characteristics and parameters to be configured for each method. 

Table 18. Summary of RL approaches. 

Approach State Space Action Space Parameters 

Q-learning Discrete, eq. (19)  Discrete, eq. (20) ns, na, b 

D3QN Continuous, eq. (16) Discrete, eq. (20) 
na, b, DNN config, Replay 

buffer 

TD3 Continuous eq. (16) Continuous, eq. (20) 
Actor/critic DNN config 
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6.3.3 Cycles for Robust RL 

This subsection is devoted to the details of the operation lifecycle presented in Figure 67b. Let 

us assume that when a new path for a flow is set up, an instance of every element in the 

architecture in Figure 68 is instantiated. The characteristics of the instances depend on the flow 

requirements, e.g., pre-trained generic models loaded in the Offline Learning block are those 

that were trained with similar QoS requirements (dmax and qa) to those of the current flow. When 

the operation starts, no online RL models exist and the maximum capacity for the flow zmax is 

allocated. All the algorithms presented next run in the Analyzer block (see Figure 68), which 

makes decisions and orchestrates the rest of the blocks based on some analysis results. 

Algorithm 11 shows the Analyzer initialization that receives the pointers to external modules 

that interact with the Analyzer, i.e., offline learner, online RL, and flow manager, and stores them 

(line 1 in Algorithm 1), and initializes the main variables used by the rest of the procedures. In 

particular, DB contains the needed traffic-related data for the analysis carried out at every phase 

(line 2), params is a vector with the parameters that characterize flow’s requirements and some 

configuration and that are used during the different phases (line 3), and phase records the 

current phase, which is initialized to Phase I (line 4). 

Before describing the algorithms for the different phases, let us present a specific procedure for 

traffic variance analysis. Algorithm 12 is applied to the set of observed traffic-related 

measurements, stored in DB, with the objective of characterizing and quantifying the fluctuation 

of the traffic around its observed average. After retrieving data time series contained in DB, the 

average pattern on the given traffic time series X is computed (lines 1–2 in Algorithm 2). Note 

that the result of this operation produces time series Xavg, with the smoothed average that better 

fits X. Without loss of generality, we assume that a combination of regression techniques 

including polynomial fitting, spline cubic regression, and sum-of-sin regression is applied, 

returning the best result in terms of accuracy and model complexity. The relative residuals are 

computed (line 3) and the difference between maximum and minimum of these residuals (var) 

is considered as the traffic variance measurement (line 4). This value together with the previous 

var measurements stored in DB (time series Y) are used to compute the derivative drv of var in 

time, i.e., the first-order difference (lines 5). The last value in drv denotes the current derivative, 

which is later used for the identification of the traffic variance (line 6). In addition, a variance 

score is computed as the maximum absolute derivative value normalized by the observed 

variance (line 7). The score approaches 1 if the traffic fluctuates around its maximum range 

between two consecutive time measurements. This score will be used later for generic model 

tuning purposes. The computed variance results are eventually returned (line 8). 

Algorithm 11. Analyzer Initialization 

INPUT: offlineLearn, onlineRL, flowMgr OUTPUT: - 

1: 
2: 
3: 

 
 

4: 

store(offlineLearn, onlineRL, flowMgr) 
initialize DB 
params ← [<l*, zmax, k, eps>, // Phase I 

<qa, cfl, ∆ρ>, // Phase II 
<var_l, var_h, r_l, m>] // Phase III 

phase ← PhaseI 

Algorithm 12. varianceAnalysis(). 

INPUT: DB  OUTPUT: V 

1: 
2: 
3: 

<X,Y > ← < DB.traffic, DB.var> 
Xavg ← computeAveragePattern(X) 
Xres ← (X—Xavg) ⨀ X−1 
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4: 
5: 
6: 
7: 
8: 

var ← max(Xres)—min(Xres) 
Y.append(var) 
drv ← computeDerivative(Y) 
score ← max(|drv|)/var 
return <var = var, curdrv = drv[-1], score = score > 

Algorithm 13 specifies the main procedure running in the Analyzer block and it is called 

periodically every time t. First, new traffic monitoring data are gathered from the flow manager 

(line 1 in Algorithm 13). Then, the specific procedure for each phase is called with the current 

time and the collected data, and the phase changes only when the called procedure returns True 

(lines 2–10); DB is initialized every time phase changes (line 11). 

Algorithm 13. Main Analyzer Procedure 

INPUT: t OUTPUT: - 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11: 

x(t)←flowMgr.getMonitoringData(t) 
if phase = PhaseI then 

changePhase ← thresholdBased(t, x(t)) 
if changePhase then phase ← PhaseII 

else if phase = PhaseII then 
changePhase ← modelSelectionAndTuning(t, x(t)) 
if changePhase then phase ← PhaseIII 

else // phase = PhaseIII 
changePhase ← specificModel(t, x(t)) 
if changePhase then phase ← PhaseII 

if changePhase then initialize DB 

 

Algorithm 14. thresholdBased() (Phase I) 

INPUT: t, x(t) OUTPUT: changePhase 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11: 
12: 

DB.traffic.append(x(t)) 
V ←varianceAnalysis(DB) 
if |V.curdrv| < eps then 

<f0, ρ0, sc0>← offlineLearn.getGenericModel(V.var) 
ρ1←ρ0∙(sc0 / V.score) 
onlineRL.setModel(f0, ρ1) 
return True 

DB.var.append(V.var) 
k(t)←max(1, V.var / (1-l*)) 
if k(t)>k then k←k(t) else k←k - (k(t)-k)/2 
flowMgr.setupCapacity(max(k · max(x)/l*, zmax)) 
return False 

Algorithm 14 defines the operation of the Analyzer block during Phase I. Recall that during this 

phase, flow capacity allocation is managed following a threshold-based procedure, defined by 

eq. (11). First of all, DB is updated with the new monitoring data and the variance analysis 

described in Algorithm 12 is executed, storing the result in variable V (lines 1–2 in Algorithm 14). 

Then, the absolute value of the current derivative is compared with a small epsilon value (param 

eps) to decide whether enough traffic data have been already analyzed to estimate variance 

with high accuracy (line 3). If so, a generic pre-trained model f0 for the computed variance is 

retrieved from the offline learner and factor ρ0 is scaled with the ratio of scores between the 

generic model and the observed traffic (lines 4–5); the scaled factor increases (decreases) if the 

computed score is higher (lower) than the score of the generic model. The rationale behind such 

factor correction is to achieve a more robust and conservative operation of the generic model 
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under the actual traffic variance behavior. Then, the online RL module is updated with new 

model f0 and scaled factor ρ1 and Phase I ends (lines 6–7). 

In case the current derivative is still high, the threshold-based capacity allocation procedure 

continues. Here, factor k in eq. (11) is adapted from its input value as soon as more traffic data 

are available and traffic variance is better estimated. With the estimated variance and target 

load l*, factor k(t) is computed. Then, k is updated in two different ways: (i) reducing by half 

between k and k(t) if k is larger than needed; or (ii) replaced by k(t) if is k is lower than needed 

(lines 8–10). The flow manager is requested to modify the flow capacity to the computed z(t), 

which is bounded by the maximum capacity zmax (line 11) and Phase I continues (line 12). 

Algorithm 15 details the procedure during Phase II. Traffic data collected from the flow manager 

are sent to the offline learner block for updating a historical traffic database used to train RL 

models offline in the sandbox (line 1 in Algorithm 15). The offline model training procedure runs 

in parallel in the sandbox domain. When enough traffic measurements are collected and 

processed and an accurate and robust offline-trained RL model is available, it is sent to the online 

RL block to be used for flow capacity operation; this ends Phase II (lines 2–5). Otherwise, Phase 

II continues, aiming to identify whether the RL model currently in operation needs some 

parameter tuning (in addition to model updates that the RL algorithm performs during 

operation). In particular, this procedure aims to supervise the degree of QoS assurance (as 

compared with the target value, qa) obtained by the current model and modifying factor ρ when 

needed to achieve the target performance. Note that low overprovisioning is the secondary 

objective and therefore, QoS assurance analysis requires computing whether the current 

capacity violated maximum delay (o(t) < 0) or not (o(t) ≥ 0). The result is stored in DB (lines 6–

10).  

Algorithm 15. ModelSelectionAndTuning() (Phase II) 

INPUT: t, x(t) OUTPUT: changePhase 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 

offlrn.updateTrafficDB(x(t)) 
if offlineLearn.newModelAvailable() then 

<f, ρ>← offlineLearn.getModel() 
onlineRL.setModel(f, ρ) 
return True 

xmax(t)=max(x) 
z(t-1)← flowMgr.getCurrentCapacity(t) 
o(t)←computeSlackSurplus(xmax(t), z(t-1)) // eq. (13) 
if o(t)<0 then DB.QA.append(0) 
else DB.QA.append(1) 
pobs←avg(DB.QA) 
pval_l←BinomialTest1(“pobs<qa”) 
pval_g←BinomialTest2(“pobs>qa”) 
if min(pval_g, pval_l)>cfl then 

DB.QA←∅ 
if pval_l<cfl then onlineRL.tuneParam(‘ρ’, ∆ρ) 
else onlineRL.tuneParam(‘ρ’, -∆ρ) 

return False 

Next, two different one-sample proportion binomial hypothesis tests are conducted to detect 

whether the observed degree of QoS assurance is significantly below (test 1) or above (test 2) 

the target value qa (lines 11–13). In the case that some of the hypotheses can be confirmed (on 

the contrary, it is assumed that QoS assurance is in the target), ρ needs to be tuned. If hypothesis 

test 1 is confirmed, some extra capacity allocation is needed, which is achieved by increasing ρ 
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with a given step size ∆ρ. On the contrary, if hypothesis test 2 is confirmed, allocated capacity 

can be reduced, so ρ is decreased by the same step size. 

Algorithm 16. specificModel() (Phase III) 

INPUT: t, x(t) OUTPUT: changePhase 

1: 
2: 
3: 
4: 
5: 
6: 
7: 

rw(t) ← onlineRL.getReward(t) 
DB.traffic.append(x(t)) 
DB.reward.append(r(t)) 
if |DB.traffic|>m then DB.traffic.pop(0) 
if |DB.reward|>m then DB.reward.pop(0) 
V←varianceAnalysis(DB) 
return V.var NOT IN [var_l, var_h] OR rw(t) < rw_l  

Finally, Algorithm 16 describes the procedure running in the Analyzer during Phase III. This 

algorithm analyzes the last m traffic measurements and the reward obtained by the online RL 

(lines 1–6 in Algorithm 16). The objective of this analysis is to check whether both the current 

traffic and reward follow the expected behavior (line 7). Let us assume that an extended 

estimation of the working variance with range [var_l, var_h] is found during the offline training 

phase—with a minimum and maximum variance that the RL model can support without losing 

either robustness or desired performance. Bear in mind that operating a traffic flow with more 

variance than what is supported by the model can lead to poor QoS assurance and even traffic 

loss. On the contrary, a traffic flow with less variance can produce large overprovisioning, which 

the online RL can hardly decrease with its fine adaption configuration. In fact, online RL 

continuously adapts the model to smooth traffic changes with controlled reward fluctuations, 

so that a minimum reward (rw_l) can be considered as the reasonable limit of a normal RL 

operation. Therefore, Phase II is triggered back when traffic variance leaves the working range 

of the RL model or the observed reward goes below that limit; otherwise, Phase III continues. 

6.3.4 Illustrative Results 

For the ongoing evaluation, a Python-based simulator reproducing the modules described in 

Figure 68 was implemented. Realistic traffic flow behavior was accurately emulated using a 

simulator based on the CURSA-SQ engine, which combines statistically based traffic flow 

generation and continuous G/G/1/k queue model based on the logistic function; multiple 

queuing systems can be numerically analyzed and related statistics, such as traffic magnitude, 

queuing delay, and packet loss, be computed. In the context of this work, CURSA-SQ is used as: 

(i) a lightweight network simulator to emulate a flow manager and the forwarding plane; and (ii) 

a flow simulator running in the ML sandbox domain for offline RL training purposes. It is worth 

highlighting that both CURSA-SQ instances have been independently configured and managed 

in order to reproduce the actual separation between the physical network and the sandbox 

domain. 

Traffic was randomly generated according to different traffic configurations. Each traffic 

configuration is the combination of traffic pattern and variance. Two different daily patterns 

were considered: a simple sinusoidal pattern for offline training purposes, and a realistic pattern 

to emulate the real traffic in the forwarding plane. In both cases, traffic fluctuates between 5 

Gb/s (valley) and 40 Gb/s (peak) throughout the day. Regarding variance, it is defined as a 

percentage of the mean, so the magnitude of traffic oscillations changes in time 

(heteroscedasticity). For the sake of a wider analysis, we considered five different variance 

values: 1%, 3%, 6%, 12%, and 25%.  

RL algorithms running in the RL-based operation and offline learning modules have been 

implemented in Python3 using libraries such as pytorch. A general epsilon decay strategy was 
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implemented in all the RL methods for balancing between exploration and exploitation, with 

decay factor equal to 0.00125. Moreover, a discount factor equal to 0.95 was set up. Q-learning 

was configured with ns = 14 states and na = 3 actions, as well as capacity allocation granularity b 

= 1 Gb/s. In the case of D3QN and TD3, every DNN consisted of two hidden layers with 100 

neurons each implementing the Rectified Linear Unit activation function. All DNNs were trained 

by means of the Adam replacement optimizer with learning rate equal to 0.001 and maximum 

replay buffer equal to 1e6 samples.  

Finally, the capacity and QoS parameters for the flow under study are maximum capacity zmax = 

100 Gb/s, optimal load l* = 80%, and QoS assurance qa = 99%. 

In the next two subsections, we first focus on comparing the different RL methods for the 
scenario where the pure online learning RL-based operation is performed (see Figure 67a). Next, 
we evaluate the offline leaning + online RL-based operation (Figure 67b), including the three 
proposed phases. 

Online RL-Based Operation 
Let us first analyze the reliability of the RL operation under real traffic; we focus specifically on 

the traffic loss. For this study, low (1%) and high (25%) variances were considered. Figure 73 

plots the traffic loss as a function of time from the path set-up time. We observe extremely poor 

performance (high loss) at the beginning of operation, as it was anticipated in Figure 67a. 

Interestingly, we observe that the simplest Q-learning method provides the fastest convergence 

time to achieve zero loss, although it needs more than one day to achieve zero loss operation 

when traffic variance is high. Note that D3QN is the most sensitive to traffic configuration (zero 

loss operation time increases three times from low to high variance). TD3 is the method with 

the slowest convergence (around 4 days). 

 

Figure 73. Achieving zero loss operation. 

As all the RL methods have achieved zero loss operation, the rest of the results analyze the 

performance after 5 days of operation. As an illustrative example of the RL-based operation, 

Figure 74 shows one day of real traffic x(t) and variance from low to high, as well as the capacity 

z(t) allocated using Q-learning; optimal ρ for each variance is configured. The optimal capacity 

allocation (o(t) = 0) and the margin for overprovisioning y(t) are also plotted. We observe that 

the allocated capacity is close to the optimal one, absorbing fluctuations with enough margin to 

meet the target QoS. 
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Figure 74. Q-Learning operation. Traffic and allocated capacity for low (a), moderated (b), and 

high (c) traffic variance. 

Let us now analyze the impact of the margin multiplier ρ to achieve the desired QoS. Figure 75 

shows the obtained QoS assurance as a function of ρ. For the sake of a comprehensive study, all 

traffic configurations for sinusoidal (Figure 75a–c) and real (Figure 75d–f) traffic patterns have 

been analyzed. The minimum ρ value has been set to 1. The ρ values for which the target QoS 

of 99% is achieved are highlighted with a round marker. We observe in the results that ρ depends 

not only on the traffic characteristics, but also on the RL method. 

 

Figure 75. QoS as a function of ρ models trained with a sinusoidal traffic pattern (a–c) and real 
traffic (d–f). 

Interestingly, Q-learning needs the widest range of values for all traffic configurations, requiring 

a smaller ρ as soon as variation increases. It is worth noting that the large range of values ([1.9, 

6.4]) makes it more difficult to adjust ρ for different traffic configurations. Conversely, D3QN 

and TD3 show a smaller ρ range and opposite behavior as ρ increases with the traffic variance. 

The detailed evolution of the optimal ρ with respect to the traffic variation is plotted in Figure 

76a, and Figure 76b shows the total overprovisioning introduced by every RL method operating 

with the optimal ρ. We observe that overprovisioning increases with traffic variation, with a 

slightly different trend depending on the traffic pattern (sinusoidal and real). Moreover, every 

RL method introduces different amounts of overprovisioning as shown in Figure 77, where the 

relative overprovisioning per RL method with respect to the minimum one for every traffic 

configuration is represented. Q-learning is the method that requires larger overprovisioning in 

10

20

30

40

50

60

70

80

90

100

10

20

30

40

50

60

70

80

90

100

Time (t) [hh]

Tr
af

fi
c

a
n

d
 C

ap
ac

it
y

[G
b

/s
]

2400 03 06 09 12 15 18 21

Time (t) [hh]

y(t)

z(t)

o(t) = 0

x(t)

variance = 25%
ρ = 2.0

2400 03 06 09 12 15 18 21

(a) (c)

10

20

30

40

50

60

70

80

90

100

variance = 1%
ρ = 2.8

variance = 6%
ρ = 2.9

(b)

Time (t) [hh]
2400 03 06 09 12 15 18 21



 D4.3 GA Number 101016663 
 

98 

 

general terms, whereas D3QN and TD3 show better performance. Interestingly, the differences 

are proportionally larger when traffic variation is small. 

 

Figure 76. Optimal margin multiplier (a) and overprovisioning (b). 

 

Figure 77. Relative extra overprovisioning. 

Let us analyze the effect in terms of extra-overprovisioning when ρ is fixed to a constant value, 

high enough to assure reliable QoS performance in online RL operation under traffics with a wide 

range of characteristics. The squared purple markers in Figure 75a indicate the QoS that could 

be achieved under different traffic characteristics for the largest ρ. Table 19 summarizes the 

relative and absolute increment of overprovisioning (computed in total Tb per day of operation) 

produced with the most conservative ρ configuration for all traffic configurations and RL 

methods. When the fixed ρ happens to be the optimal one for the traffic and RL method, no 

additional overprovisioning is set up (values in boldface); otherwise, additional overprovisioning 

is introduced. Q-learning is the method that adds the largest extra overprovisioning (exceeding 

200% and 30 Tb/day). In any case, it is worth highlighting that achieving optimal performance in 

terms of QoS assurance while achieving efficient capacity allocation requires some method to 

find the optimal ρ for the traffic characteristics. 

To conclude this section, we can highlight (i) that the CRUX problem proposed in Section 2 can 

be tackled using RL; under different traffic characteristics and RL methods, the target QoS is 

assured with reduced overprovisioning; (ii) online RL operation leads to traffic loss at the 

beginning of flow capacity operation; this fact prevents us from using RL until online learning 

has come up with a robust and reliable model to guarantee autonomous flow operation; and 

(iii) the comparison of the RL methods shows interesting differences among them. While Q-

learning learns fast, it also produces larger overprovisioning. D3QN and TD3 need more time to 

ensure zero loss and adjust QoS at the benefit of reducing overprovisioning. 
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Table 19. Additional overprovisioning when fixing ρ conservatively. 

Traffic  
Pattern 

Traffic 
Variance 

Q-Learning D3QN TD3 

% Tb/day % Tb/Day % Tb/Day 

Sinusoidal 

1% 0.00% 0 0.88% 0.02 2.49% 0.05 
3% 19.18% 0.67 6.04% 0.16 20.67% 0.51 
6% 38.71% 1.85 5.21% 0.21 15.38% 0.63 

12% 44.15% 3.56 0.00% 0.00 4.01% 0.32 
25% 60.40% 8.29 0.00% 0.00 0.00% 0.00 

Real 

1% 0.00% 0 0.05% 0.00 4.95% 0.11 

3% 106.68% 3.94 9.52% 0.28 0.39% 0.01 

6% 192.50% 9.52 12.72% 0.60 2.90% 0.14 

12% 200.69% 18.37 0.00% 0.00 0.00% 0.00 

25% 219.35% 34.46 0.00% 0.00 0.00% 0.00 

Offline Leaning + Online RL-Based Operation 
Let us now focus on evaluating the operational approach detailed in Figure 67b, which consists 

of three phases. Before emulating flow operation, we generated synthetic data for all the traffic 

variances following the sinusoidal traffic pattern and used them to pre-train generic models 

independently for each traffic configuration and RL method. We ran every offline RL training for 

14,400 episodes to guarantee QoS assurance with minimum overprovisioning. 

Starting with the analysis of Phase I, Figure 78a shows an illustrative example of the evolution 

of the capacity during the operation of the threshold-based algorithm (Algorithm 14) for the real 

traffic pattern and variation 12%. Actual traffic x(t), allocated capacity z(t), and the evolution of 

the self-tuned k parameter are also shown. Note that k quickly evolves from its initial value (k = 

4) to reach a capacity closer to actual traffic. However, as soon as the load exceeds the optimal 

one l*, k is increased until reaching a stable value (1.47), which happens after 60 minutes of 

operation. The inset table in Figure 78a details the values of k after one hour of operation for all 

traffic configurations. It is worth noting that the self-tuned threshold-based algorithm operates 

with zero traffic loss for all the cases. 

 

Figure 78. Phase I: Self-tuned threshold (a) and traffic variance analysis (b). 

Parallel to the threshold-based operation, traffic variance analysis (Algorithm 12) is conducted 

in order to compute the true variance of the traffic. Figure 78b shows the computed traffic 

variation as a function of time for all traffic configurations. Round markers highlight when the 

derivative of traffic variance reached a small eps = 0.01 and labels show the final computed 

variance value. The low error between computed and true variances is noticeable. Such 

estimation is achieved within two hours in all the cases. 
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Figure 79. Phase II: QoS (a) and ρ (b) evolution. 

After two hours of operation, Phase II (Algorithm 15) can start and an RL method with a generic 

pre-trained model for the true traffic variance is set to operate. The tuning of parameter ρ (∆ρ 

= 0.1) and the resulting QoS are shown in Figure 79a and Figure 79b, respectively, for traffic 

variance equal to 12%. To detect whether the measured QoS is considerably below or above the 

desired qa value, a significance level cfl = 0.05 was used to be compared against the obtained p-

value from the binomial tests. We observe that ρ decreases up to a magnitude that produces 

QoS below 99%; just after that, ρ increases and remains stable from that point on. As shown in 

Figure 79a, the time to converge to the best ρ is 3960, 1440, and 3600 min (2.75, 1, and 2.5 days) 

for Q-learning, D3QN, and TD3, respectively. 

The above analysis, however, needs to be complemented with the overprovisioning to extract 

meaningful conclusions. Figure 80 presents the overprovisioning obtained by every RL method 

before and after tuning ρ in Phase II. For reference purposes, the overprovisioning introduced 

by the threshold-based algorithm during Phase I is also included as a dotted line. The large 

benefits in terms of overprovisioning reduction for the RL-based operation with regard to the 

threshold-based algorithm are remarkable—up to 45% of capacity allocation reduction and 11 

Tb/day of total capacity savings for one single flow. After ρ tuning, D3QN shows the worst 

performance, as Q-learning and TD3 achieved significantly lower overprovisioning (24%, ~3 

Tb/day). Figure 80 also shows the obtained overprovisioning when the specific model (trained 

offline with the collected traffic) is loaded in Phase III after 10 days of operation. We observe 

that Q-learning and TD3 reduce overprovisioning slightly, whereas a larger reduction is achieved 

with D3QN; we conclude that the former RL methods are less dependent on an accurate model 

of the specific traffic to achieve optimal capacity allocation. 

 

Figure 80. Overprovisioning reduction. 

Finally, let us analyze the performance of Algorithm 16 to detect traffic changes while flow is 

operated in Phase III; recall that such detection immediately triggers Phase II. To this end, we 
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generated four different scenarios, combining two different types of changes in traffic variance 

while keeping traffic profile unchanged. We evaluate gradual and sudden/increase or decrease 

traffic variance changes. Figure 81 illustrates two out of four scenarios: gradual increase 

(variance gradually increases from 1% to 25% along 5 days) and sudden increasing (from 1% to 

25% in just one minute); an inverse trend is configured for gradual and sudden decrease 

scenarios.  

Table 20 details the time to detect the traffic change when the variance range was configured 

as [var_l, var_h] = [−10%, +10%]; the current traffic variance and minimum reward rw_l was set 

to 5% of the minimum observed reward (see Algorithm 16). We observe that the proposed 

mechanism ensures prompt reaction under any of the studied changes—immediate detection 

is achieved when a sudden change happens, and no more than one hour is required for gradual 

change detection. 

 
Figure 81. Phase III: Traffic variance change scenarios. Gradual increase (a) and sudden increase 

(b). 

Table 20. Phase III: Analysis under traffic changes. 

Traffic Change 
Scenario 

Detection 
Time 
(min) 

QoS at Detection Time (%) 
Reward Degradation 
(Min from Detection) 

Q-L D3QN TD3 Q-L D3QN TD3 

Gradual increase 45 99.30 100 100 419 595 585 

Gradual decrease 650 99.86 99.44 99.72 3354 2440 2233 

Step increase 1 99.17 99.86 99.86 332 413 433 

Step decrease 1 99.03 99.44 99.44 494 683 212 

To evaluate the promptness of detection, Table 20 considers the observed QoS at the detection 

time, as well as the elapsed time between detection time and the time when reward begins to 

degrade (reveals whether the RL module is working properly). Note that the detection happens 

when the QoS is still above the target value in all the cases. This is proof of anticipation of the 

change detection, which is key to guarantee robust and reliable RL-based operation. 

6.3.5 Concluding Remarks 

The Flow Capacity Autonomous Operation (CRUX) problem has been introduced to deal with 

online capacity allocation of traffic flows subject to dynamic traffic changes; it guarantees precise 

QoS requirement assurance and minimizes capacity overprovisioning. RL-based operation was 

proposed to learn the best policy for the traffic characteristics and QoS requirements of a given 

flow. RL allows adaptive and proactive capacity allocation once the optimal policy is learnt. 

However, pure RL operation lacks robustness during online learning (e.g., at the beginning of 

flow operation and in the event of traffic changes) and might result in undesirable traffic loss. 

However, this can be avoided using simpler reactive threshold-based capacity allocation. 
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In view of the above, an offline + online learning lifecycle was proposed, aiming at providing 

guaranteed performance during the entire lifetime of the traffic flow. The proposed 

management lifecycle consists of three phases. Firstly, a self-tuned threshold-based approach 

was proposed to operate just after the flow is set up and until enough evidence of the traffic 

characteristics are available (Phase I). Secondly, an RL operation based on models with a pre-

trained generic traffic profile but meeting specific traffic variance that was measured during 

Phase I was executed (Phase II). Lastly, an RL operation with models trained for the real 

measured traffic, while allowing an online RL to adapt to smooth traffic changes (Phase III). In 

addition, during Phase III online traffic analysis and RL performance tracking was conducted to 

detect sharper traffic changes that might require moving back to Phase II to keep high reliability. 

The proposed lifecycle was implemented under three different RL models, namely, Q-learning, 

D3QN, and TD3. While Q-learning allows for simple and easy-to-learn definition of policies under 

discrete spaces of states and actions, D3QN and TD3 enable the application of more complex 

policies based on deep learning models with continuous state space (D3QN) and continuous 

action space (TD3). 

Numerical evaluation of the proposed offline + online lifecycle under different RL techniques 

was carried out, reproducing realistic traffic flows in a simulation environment. For 

benchmarking purposes, comparative results against basic threshold-based operation and 

online RL operation were also presented. The main conclusions extracted from the numerical 

evaluation are summarized in Table 21, where colors are used to highlight the results. As 

expected, online RL produces moderate to high loss (reaching peaks of 1–10 Gb/s) at the 

beginning of the network operation. Among the different methods, Q-learning reached the 

required QoS operation earlier (up to 6 times faster than TD3) at the expense of moderate to 

large overprovisioning (up to 40% larger than TD3). On the other hand, D3QN and TD3 needed 

more time to converge to the required QoS operation but resulted in considerably better 

capacity allocation efficiency. 

Table 21. Summary of results for policy-based and RL operation with and without offline 

learning. 

Approach Concept Threshold-based Q-Learning D3QN TD3 

Policy-
based 

Traffic loss Zero traffic loss    
QoS assurance Since path set-up    

Over-provisioning Very large    

Online RL 
Operation 

Traffic loss  Moderated loss Moderated loss High loss 

QoS assurance  After 2 days After 2 days After 5 days 

ρ range for QoS assurance  Wide Narrow Narrow 

Over-
provision 

conservative ρ  Large Small Small 

optimal ρ  Moderate Small Small 

Offline +  
Online RL 
Operation 

Traffic loss Zero traffic loss Zero traffic loss Zero traffic loss Zero traffic loss 

QoS assurance Since path set-up Since path set-up Since path set-up Since path set-up 

ρ fine tuning effectiveness   Large Moderated Large 

Over-
provision 

Gain 

Phase I None    

Phase I-> Phase II  Moderated Large Large 

Phase II  Large Small Large 

Phase II-> Phase III  Small Large Small 

Reliability (Phase III-> Phase II)  High High High 

The analysis of the numerical results of the proposed lifecycle leads to several conclusions. 

Firstly, zero traffic loss and QoS assurance is guaranteed from path set-up regardless of the 

chosen RL method. Secondly, Phase II allows a very efficient and robust operation based on pre-
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trained generic models that were tuned with specific traffic characteristics. Phase II clearly 

outperformed threshold-based operation in terms of capacity utilization since it remarkably 

reduced overprovisioning (up to 45%). Thirdly, all the methods reached outstanding capacity 

efficiency (more than 50% of capacity reduction with respect to threshold-based operation) 

without losing QoS performance in Phase III; Q-learning and TD3 behaved slightly better than 

D3QN. Finally, the continuous analysis and tracking conducted during Phase III to detect traffic 

changes allowed a prompt detection of sharp changes (between 1 and 650 minutes), triggering 

Phase II from several hours to days before online RL operation suffered any significant 

degradation. 

6.4 DYNAMIC CONTROL OF P2MP CONNECTIVITY 
P2MP connectivity, when supported by DSCM, leads to cost reduction in the presence of large 

dynamic traffic scenarios if not all SCs need to be active when traffic is low. To dynamically 

allocate SCs based on the traffic observed at the individual Txs in the leaves of a P2MP 

connection a centralized module can be deployed in the SDN controller. Such approach can 

provide gains in the maximum number of leaves that can be supported. However, that 

centralized approach shows a number of drawbacks: i) it is still heavily reliant on the SDN 

controller to communicate with the various Txs; ii) it intakes large amounts of observational 

data, and iii) it requires to process the requests on a synchronous basis, and all near real-time 

to follow traffic dynamics. 

In this section, we distribute decision making down to the very transponders participating in the 

P2MP connection and relieve the SDN controller from near real-time operation, hence 

increasing scalability. To this end, we introduce agents with the ability to communicate among 

them directly to create a MAS. The target is to achieve gains similar to those provided by the 

centralized approach. 

6.4.1 MAS-based Subcarrier Allocation 

To show the main difficulty of moving decision making to the transponders, we focus on the 

direction from the leaves to the hub (MP2P). Here, some sort of coordination is needed to avoid 

two Txs using the same SC. Figure 82a illustrates the target scenario. Every Tx is tuned on the 

portion of the spectrum assigned (dotted lines), within which its SCs are allocated.  
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Figure 82: MP2P connectivity based on DSCM (a). SC allocation upon Tx1 request (b) and (c). 

Neighbor shifting (d). 

We define a normative MAS with two types of agents for the Txs and the Rx. There are various 

interpretations of normative MAS from which we adopt the definition where the system is 

governed by restrictions on patterns of behaviors of the agents in the system. In the proposed 

MAS, Tx and Rx agents have distinctive norms that govern their behaviors. The proposed 

algorithms rely on agent sociability, where agents can share knowledge to achieve their goals; 

hence, communication is an important aspect of agents’ functionality. We define 

communication channels capable of sending and receiving information between each Tx and the 

Rx, while avoiding Txs communicating with one another. 

The Tx agent is responsible for allocating enough capacity for the incoming traffic. Traffic 

prediction is used to anticipate traffic dynamicity, and required capacity changes (activation or 

deactivation of SCs) are requested to the Rx agent. The role of the Rx agent is to mitigate SC 

oversubscription, which can occur when multiple Txs request the activation of a single SC. As for 

the Rx agent, we consider two main functionalities, used in combination: i) a simple request 

process, where a Tx agent makes a request and the Rx evaluates the spectrum in order to accept 

or deny this request. This is shown in Figure 82b, where Tx1 sends a request for an increase in 

capacity. The Rx replies with instructions for the Tx to occupy SC 4. Another example is shown 

in Figure 82c, where the Rx is aware of a possible oversubscription of SC 5 and commands Tx1 

to use SC 1; and ii) a neighboring Tx shifting in order to satisfy a Tx’s request. For example, in 

Figure 82d, Tx2 requests additional capacity, but there is no free spectrum since SCs 5 and 8 are 

already allocated. In that case, the Rx can ask the neighbor Tx3 to shift the SCs right and liberate 

SC 8, so that Tx2 can allocate it. 

6.4.2 Architecture and Agent Models 

In the previous section, Tx and Rx agents played several roles, from capacity and SC management 

to communication. However, the main role of MAS agents is to communicate with one another 

to coordinate SC utilization in the MP2P connection and avoid oversubscriptions. The MAS Tx 

agent also interacts with the local capacity manager which manages the capacity available 

between the local Tx and the Rx to follow traffic dynamicity. Tx and Rx MAS agents also interact 
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with the transponder agent responsible for SC operation, such as activation and deactivation to 

meet capacity requirements, but it does not make any decision on the use of the spectrum. The 

spectrum management role is now played by the MAS Rx agent. Figure 83 summarizes the 

relationship among the different agents in the system and includes the main commands that 

they exchange. 

 
Figure 83: Relation between MAS and transponder agents 

The MAS Tx agent role is simply to translate requests to/from the transponder agent to/from 

the MAS Rx agent. However, the role of the MAS Rx agent is more complex as it has to coordinate 

spectrum allocation of the whole MP2P connection. Algorithm 17 describes the Rx agent; it 

receives a command and the ID of the Tx agent that issued it (we used the value -1 to indicate 

an invalid ID) and returns the command to be executed by a Tx agent on a specific SC. 

Algorithm 17. Rx Agent 

INPUT: cmd, TxId OUTPUT: cmd, TxId, SCId 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

 

10: 

11: 

12: 

if cmd in {SCActivated, SCDeactivated} then 

<cmd, TxId> ← pendingReq.remove() 

if cmd == DEC then 

SCId ←find_best(SCTable, TxId, RELEASE) 

return {RELEASE, TxId, SCId} 

if cmd == INC then 

SCId ← find_best(SCTable, TxId, USE) 

if SCId <> -1 then return {USE, TxId, SCId} 

shift=<TxId, dir> ← find_neighborShift ( 

SCTable, TxId, SHIFT) 

if not shift then return {USE, TxId, -1} 

pendingReq.add(<cmd, TxId>) 

return {SHIFT, shift.TxId, shift.SCId} 

 

The Rx agent processes messages from Tx agents to request or release a SC and from the local 

transponder agent when a SC has been actually activated or deactivated. Because operation is 

asynchronous, a list of requests pending to be processed is maintained. Pending actions are 

processed back after SCs are actually activated or deactivated (lines 1-2). In addition, the Rx 

agent maintains an internal table with the status of every SC, which is checked and updated 

when a request to release a SC or to get a free SC is received from a Tx agent. 

When a request to release a SC is received (lines 3-5), the Rx agent finds which SC is the best to 

be released as a function of the allocation of neighboring Txs. The SC selected is returned to be 

sent to the requesting Tx agent. The allocation of a new SC entails more complexity (lines 6-12). 
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If a neighboring SC to the Tx current allocation is free, then it is selected (lines 7-8). Otherwise, 

a possible spectrum shifting (entailing the activation and deactivation of two SCs) of a 

neighboring Tx is evaluated (lines 9-12). If a spectrum shifting is possible, it is requested to that 

Tx agent and the current SC allocation request is added to the pending list. 

6.4.3 Centralized Subcarrier Allocation 

This section proposes an Integer Linear Programming (ILP) model to dynamically solve SC 

allocation and reconfiguration. The problem statement is: 

Given: 

• the total spectrum available for the MP2P connection, represented by ordered set W = {w1, 
w2, …, w|W|}, where |W| is the maximum number of wavelengths supported by the Rx. 

• the set of candidate channels described by set C = {c0, c1, c2, … c|C|-1}, where c0 is the empty 
set and every ci (i:1..|C|-1) is a subset of contiguous wavelengths of size 1..m, being m the 
maximum number of wavelengths supported by each Tx. We assume all Tx with the same 
characteristics. 

• a set of Txs T={ti, t2, .., tn}, where every Tx t has an associated capacity requirement kt. 

Output: the configuration of every wavelength and its assignment to every Tx, and the channel 
assigned to every Tx. 

Objective: 1) minimize the amount of lost traffic; 2) to minimize the number of used SC, thus 
minimizing energy cost; and 3) minimize the number of SCs that are reconfigured. 

The parameters and decision variables of the problem are: 

αi Weights of the multi-objective function 

kc Capacity of channel c 

δtc Equal to 1 if channel c is a candidate for transponder t, 0 otherwise. 

vtc Total number of active wavelengths w in channel c for transponder t. 

rtc Whole number describing the number of wavelengths w, that were modified with 

respect to ct. 

ct Current channel selected for transponder t. 

utc Whole number describing the difference between kt and kc. 

δcw Equal to 1 if wavelength w is in use for candidate channel c, 0 otherwise. 

stw Equal to 1 if Tx t current occupies wavelength w; 0 otherwise. 

xtc Binary decision variable, equal to 1 if channel c is assigned to Tx t; 0 otherwise. 

In order to ensure fast computation time, the number of possible solutions was limited through 

a pre-calculation, where the set of channels C is calculated as 𝛿𝑡𝑐 = 1, ∀𝑡 ∈ 𝑇, 𝑐 ∈

𝐶 | 𝑜𝑣𝑒𝑟𝑙𝑎𝑝(𝑠𝑡𝑤 , 𝑐𝑡) || 𝑐 == 𝑐0 and δcw can be easily calculated for the channels. Additionally, 

we compute 𝑢𝑡𝑐 = max(𝑘𝑡 − 𝑘𝑐 , 0) , ∀𝑡 ∈ 𝑇, 𝑐 ∈ 𝐶 | 𝛿𝑡𝑐 = 1 to calculate the traffic that could 

be lost, 𝑣𝑡𝑐 = |𝑐|, ∀𝑡 ∈ 𝑇, 𝑐 ∈ 𝐶  to track the number of wavelengths in use, and 𝑟𝑡𝑐 =

| 𝑖𝑛𝑑𝑒𝑥(𝑐𝑡) − 𝑖𝑛𝑑𝑒𝑥(𝑐)|, ∀𝑡 ∈ 𝑇, 𝑐 ∈ 𝐶 to measure the number of SC reconfigurations made for 

a potential new channel. 

The mathematical programming formulation for the problem is as follows, where the objective 

function (eq. (21)) minimizes the three defined objectives, which are weighted by the αi 

parameters, where α1 > α2 > α3 to maintain the priority of the objectives. Constraint (22) ensures 

that only one Tx can be assigned to one eligible channel, and constraint (23) ensures that every 

wavelength can be occupied with, at most, one and only one SC from one single Tx. 
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min∑∑[∝1· 𝑢𝑡𝑐 +∝2· 𝑣𝑡𝑐 +∝3· 𝑟𝑡𝑐] · 𝑥𝑡𝑐
𝑐∈𝐶𝑡∈𝑇

 (21) 

subject to: 

∑𝛿𝑡𝑐 · 𝑥𝑡𝑐 = 1

𝑐𝜖𝐶

∀𝑡𝜖𝑇 (22) 

∑∑𝛿𝑡𝑐 · 𝛿𝑐𝑤 · 𝑥𝑡𝑐 ≤ 1

𝑐𝜖𝐶𝑡𝜖𝑇

∀𝑤𝜖𝑊 (23) 

6.4.4 Results 

In order to evaluate the proposed MAS system, a Python-based simulator was implemented to 

reproduce the MP2P optical connection in Figure 82 and include the agents and communication 

channels in Figure 83. Each Tx was equipped with 4 60Gb/s SCs (assuming 16QAM at 11 Gbaud). 

Besides each Tx, a packet traffic generator was used to inject traffic following a typical daily 

profile varying between 60 and 240 Gb/s, thus leading to capacity requests between 1 and 4 

SCs. On the Rx side, 16 SCs were configured, thus leading to a maximum capacity of 960 Gb/s 

for the whole MP2P connection. 

Two traffic scenarios were considered, namely, in-phase and opposition-phase, with Txs 

requiring either a similar or different (respectively) number of SCs at a given time. Figure 84 

shows the total offered traffic (average and maximum) as a function of the number of Txs. The 

in-phase scenario presents a high peak/average ratio (1.7) similar to that of a single Tx traffic. 

Thus, although 4 Txs produce moderate average traffic, the maximum reaches Rx capacity limit. 

On the other hand, as a consequence of traffic multiplexing, the opposition-phase scenario 

presents a much lower peak/average ratio (1.1), reaching maximum Rx capacity when 6 Tx are 

considered. 

 
Figure 84: Offered Traffic at Rx Figure 85: MAS vs Centralized  Figure 86: SC reconfigurations 

Two different configurations for the MAS Rx agent with increasing functionalities were 

evaluated: i) Simple Request, corresponding to the process illustrated in Figure 82b-c and 

defined by lines 1 to 8 in Algorithm 17; and ii) Neighbor Shifting, adding the process illustrated 

in Figure 82d to the previous functionalities and defined by the whole Algorithm 17. Figure 85 

shows the performance of the MAS Rx agent configurations as a function of the number of Txs. 

For benchmarking purposes, the synchronous centralized approach based on the optimization 

model was implemented and executed every minute with monitoring data received from Txs. In 

light of Figure 85a, we can conclude that, under the in-phase scenario, both MAS configurations 

reached a similar performance to the centralized one, accepting 4 Tx without loss and 5 Txs with 
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moderated loss ~3%. However, under the opposition-phase scenario (Figure 85b), the maximum 

of 6 Tx without loss is achieved by both centralized and MAS with neighbor shifting. 

Complementing the previous results, Figure 86 shows the average number of SC 

reconfigurations per Tx for both traffic scenarios. Values are normalized to the number of 

reconfigurations with only one Tx. We observe that both methods perform the same number of 

SC reconfigurations when the spectrum is not at saturation; when the spectrum is near 

saturation, the MAS with neighbor shifting performs more reconfigurations to accommodate Tx 

requests. 

Finally, Table 22 focuses on MAS with neighbor shifting and summarizes the average number of 

messages exchanged between a Tx and the Rx at a given time, as well as the percentage of those 

messages belonging to the neighbor shifting process. We observe that a moderated number of 

extra messages (up to 24% w.r.t that of the simple request process) are enough to eliminate loss 

and achieve near-optimal performance. 

Table 22. Message Exchange Analysis 

# Tx In-phase Opposition 
avg(msg/Tx) % shifting avg(msg/Tx) % shifting 

4 1.67 0% 1.78 0% 
5 2.02 17% 1.86 6% 
6 1.72 2% 2.35 24% 

6.4.5 Conclusions 

We showed that dynamic SC allocation brings significant capital and operational cost reduction 

in P2MP connectivity, as compared to the static SC allocation. A MAS system for near real-time 

optical SC allocation has been presented. The distributed MAS reaches similar gains to 

centralized SC management. However, by moving decision making to the transponders in the 

P2MP connection a much more scalable solution can be created, thus relieving the SDN 

controller from operation after the provisioning phase. 
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7 CONCLUSIONS  

Different approaches to reduce operation overheads have been shown in this deliverable, 

targeting: (i) overprovisioning minimization though planning and orchestration; (ii) predictive 

failure management to minimize operational expenditures; and (iii) simplification of network 

and service operations, through digital twining solutions and near-real time control of network 

resources. 

Although the assessment of many of the solutions are from simulation and numerical evaluation, 

experimental implementations and results are also shown, thus demonstrating the feasibility of 

the autonomous network operation and showing the need for larger efforts to bring such 

solutions to real network operator infrastructures. 
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