

Deliverable D4.1

Infrastructure Control and Service

Management architecture, initial

requirements, and existing

frameworks
Editor O. González de Dios (TID)

Contributors CTTC, TID, UC3M, TIM, INF-P, ADVA SE, NBLF, CNIT, CNR,

UPC, OLC-E, ELIG, TuE, PLF

Version 1.0

Date M DD, 202Y

Distribution PUBLIC (PU)

 D4.1 GA Number 101016663

 D4.1 GA Number 101016663

￼

This document contains information, which is proprietary to the B5G-OPEN (Beyond 5G – OPtical

nEtwork coNtinuum) consortium members that is subject to the rights and obligations and to

the terms and conditions applicable to the Grant Agreement number 101016663. The action of

the B5G-OPEN consortium members is funded by the European Commission.

Neither this document nor the information contained herein shall be used, copied, duplicated,

reproduced, modified, or communicated by any means to any third party, in whole or in parts,

except with prior written consent of the B5G-OPEN consortium members. In such case, an

acknowledgement of the authors of the document and all applicable portions of the copyright

notice must be clearly referenced. In the event of infringement, the consortium members

reserve the right to take any legal action it deems appropriate.

This document reflects only the authors’ view and does not necessarily reflect the view of the

European Commission. Neither the B5G-OPEN consortium members as a whole, nor a certain

B5G-OPEN consortium member warrant that the information contained in this document is

suitable for use, nor that the use of the information is accurate or free from risk, and accepts no

liability for loss or damage suffered by any person using this information.

The information in this document is provided as is and no guarantee or warranty is given that

the information is fit for any particular purpose. The user thereof uses the information at its sole

risk and liability.

 D4.1 GA Number 101016663

REVISION HISTORY

0.2 Oct, 18,2022 ALL First integrated version before

Plenary meeting

0.3 Nov, 8,2022 ALL Integrated version with missing

contributions, ready for review in

WP4 call

0.4 Nov, 15, 2022 ALL Sections reviewed.

0.5 Nov, 21, 2022 ALL Reviewed version.

0.6 Nov 28th, 2022 ALL Clean-up, updated reviews,

Executive summary, conclusions

1.0 Dec 20th, 2022 ALL Final version with reviewed

sections, all missing contributions,

updated references and updated

executive summary and

conclusions.

Revision Date Responsible Comment

0.1 Sept, 9, 2022 Oscar Gonzalez Initial ToC

 D4.1 GA Number 101016663

LIST OF AUTHORS

Partner ACRONYM Partner FULL NAME Name & Surname

TID Telefonica I+D Oscar González de Dios

UC3M Universidad Carlos III

de Madrid

José Alberto Hernández, Alfonso

Sánchez-Macián, Gonzalo Martínez

TIM Telecom Italia Roberto Morro

CTTC Centre Tecnològic de

Telecommunicacions

de Catalunya

Ramon Casellas, Laia Nadal, Michela Svaluto

Moreolo, Fco. Javier Vilchez, Ricardo

Martinez

ADVA SE ADVA Optical

Networking SE

José Juan Pedreño Manresa, Achim

Autenrieth

CNIT CNIT Davide Scano, Filippo Cugini

CNR CNR Alessio Giorgetti

ELIG E-lighthouse Network

Solution

Pablo Pavón Mariño

José-Manuel Martínez-Caro

NBL Nokia Bell Labs Fabien Boitier, Patricia Layec

 UPC Universitat Politecnica

de Catalunya

Luis Velasco, Marc Ruiz, Jaume Comellas,

Salvatore Spadaro, Davide Careglio, Josep

Prat

OLC-E OpenLightComm

Europe s.r.o.

Alexandros Stavdas, Evangelos Kosmatos,

Christos Matrakidis, Dimitris Uzunidis

PLF pureLiFi Ltd Rui Bian

INF-P Infinera Unipessoal

Lda

João Pedro

 D4.1 GA Number 101016663

GLOSSARY

Acronyms Description Acronyms Description

1:1 One to one NoSQL Not only SQL - Non-relational

5G Fifth Generation NS Network Service

5GPPP
5G Infrastructure Public Private

Partnership
O/E/O Optical to Electrical to Optical

6G Sixth Generation OaaS Optimisation-as-a-Service

AA API Aggregation OCP Open Compute Project

AAI Active and Available Inventory ODL OpenDaylight

AI Artificial Intelligence ODN Optical Distribution Network

AP Access Point ODTN
Open and Disaggregated Transport

Network

API Application Programming Interface OIF Optical Internetworking Forum

ASIC Application Specific Integrated Circuit OLS Open Line system

B2B Business to Business OLT Optical Line Terminal

B5G Beyond 5G OMB Optical Multi-Band

B5G-ONP Beyond 5G - Open Network Planner ONAP Open Network Automation Platform

BBF Broadband Forum ONF Open Networking Foundation

BER Bit Error Ratio ONL Open Network Linux

BF Bloom Filter ONOS Open Network Operating System

BGP Border Gateway Protocol ONU Optical Network Unit

CLI Command Line Interface ONP Open Network Planner

CMIS
Content Management

Interoperability Services
OPCE Optical Path Computation Element

CMS Count-Min Sketch OptC Optical Controller

CNF Cloud-native Network Function OS Operative System

COE Container Orchestration Engines OSA Optical Spectrum Analysers

Conc Concurrent OSM Open-Source Mano

CPU Central Processing Unit OSNIR
Optical Signal-To-Noise plus

Interference Ratio

CRD Custom Resource Definition OSNR Optical Signal-To-Noise Ratio

CRUD Create, Read, Update and Delete OSPF Open Shortest Path First

CS Connectivity Service OTs Open Terminals

DB Database OTSi Optical Tributary Signal

DC Data Center P2P Point-To-Point

DCAE Data Collection, Analysis, and Events P2MP Point-To-MultiPoint

DCO Digital Coherent Optics PCE Path Computational Engine

DevOps Development and Operations PckC Packet Controller

DHCP Dynamic Host Configuration Protocol PINS P4 Integrated Network Stack

DNN Deep Neural Network PL Physical Layer

DNS Domain Name System PLA Physical Layer impairment Aware

DSP Digital Signal Processing PLI Physical Layer impairment

DSR Digital Signal Rate PoM Policy Manager

 D4.1 GA Number 101016663

DWDM
Dense Wavelength Division

Multiplexing
PON Passive Optical Network

E2E End-To-End PSU Power Supply Unit

EMS Element Management System QoS Quality of Service

ESO European Standards Organization QoT Quality of Transmission

ETSI
European Telecommunication

Standards Institute
REST Representational State Transfer

ETSI

MANO

ETSI NFV Management and.

Orchestration
RMSA

Routing, Modulation and Spectrum

Assignment

Excl Exclusive RO Resource Orchestrator

FEC Forward Error Correction ROADM
Reconfigurable Optical Add/Drop

Multiplexer

FPM Forwarding Plane Manager RPC Remote Procedure Call

GMPLS
General Multiprotocol Label

Switching
RSA Routing and Spectrum Assignment

gNMI
gPRC Network Management

Interface
RSS Received Signal Strength

gNOI gRPC Network Operations Interface SAI Switch Abstraction Interface

gPRC gPRC Remote Call Procedure SBI Southbound Interface

GUI Graphical User Interface SCTP
Stream Control Transmission

Protocol

HLL Hyper-LogLog SDC Service Design and Creation

HrC Hierarchical Controller SDK Software Development Kit

HTTP Hypertext Transfer Protocol SDN Software Defined Networking

HW Hardware SRG Shared Risk Group

IBN Intent-Based Networking SIP Service Interface Point

ID Identifier SMA Spectral and Modulation Assignment

IDS International Data Spaces SNMP
Simple Network Management

Protocol

IETF Internet Engineering Task Force SO Service Orchestration

IGP Interior Gateway Protocol SONiC
Software for Open Networking in the

Cloud

IIoT Industrial IoT with cloudification SQL Structured Query Language

ILA In-Line Amplifier SSID Service Set Identifier

IoT Internet-of-Things SW Software

IP Internet Protocol TAI Transponder Abstraction Interface

IPFIX
Internet Protocol Flow Information

eXport
TAPI Transport API

IS-IS
Intermediate System to Intermediate

System
TCP Transmission Control Protocol

IT Information Technology TDM Time Division Multiplexing

JSON JavaScript Object Notation Te2e Time end-to-end

K8s Kubernetes TFS TeraFlowSDN

KPI Key Performance Indicator TIP Telecom Infra Project

LAG Link Aggregation Protocol TP Transponders

 D4.1 GA Number 101016663

LiFi Light Fidelity Tx Transmission

LKM Loadable Kernel Modules UDP User Datagram Protocol

LLDP Link Layer Discovery Protocol UE User Equipment

LSP Label Switched Path UI User Interface

MANO Management And Orchestration VCA VNF Configuration and Abstraction

MB Multi-Band VIM Virtualized Infrastructure Manager

MC Media Channel VNF Virtualized Network Function

MEC Multi-access Edge Computing VNFM
Virtualized Network Function

Manager

ML Machine Learning VRF Virtual Routing and Forwarding

MON Monitoring VTI Virtual Tunnel Interface

MPLS Multiprotocol Label Switching WiFi Wireless Fidelity

MSO Master Service Orchestrator WP Work Package

N2VC
Network Service to VNF

Communication
XGS Symmetric 10G-PON

NBI North Bound Interface XR Optics
Infinera Technology for point to muti-

point optics

NCACM
Network Configuration Access

Control Model
BM Burst-Mode

NE Network Element C-RAN Centralized-Radio Access Network

NF Noise Figure OLT Optical Line Terminal

NFVI
Network Function Virtualization

Infrastructure
OSS Operation Support Systems

NFVO
Network Function Virtualization

Orchestration
VLAN Virtual Local Area Network

NMC Network Media Channel WB White-Box

NOS Node Operating System YANG Yet Another Next Generation

 D4.1 GA Number 101016663

EXECUTIVE SUMMARY

This document presents in detail the Infrastructure Control and Service Management platform

architecture to be implemented in the B5G-OPEN Control, Orchestration and Telemetry System

(referred to as the control plane, for short), along with a set of initial requirements, and existing

frameworks. Such platform is aimed at supporting B5G-OPEN key features and goals:

Multi-Band operation Provision services using available bands out of the O-, E-, S-, C-
, L-band in optical fibres.

Optical continuum Allow optical slicing based on service requirements and
crossing network segments (i.e. access, metro, core, etc.)

Integrated access Operate and control service regardless of the access
technology (Mobile, Fixed, WiFi, LiFi)

E2E network orchestration Operate service and network operations from the Access Point
to the Cloud node, which may include monitoring and AI/ML

Autonomous operation Based on Intent-based and zero-touch networking paradigms,
autonomous operation is built using closed-control loops at
various levels, from device to network.

After the introduction in Section 1, Section 2 presents the B5G-OPEN set of Control and Service

Management use cases, carefully developed within WP2 and extended to the control plane.

The use cases target the provisioning of services over the B5G-OPEN domainless multi-band

network, the discovery of the existing resources and topology, planning of the network

resources, advance use cases to support fault management. In addition, use cases for

autonomous network operation are also described.

B5G-OPEN Control plane services documented in section 3 include point-to-point optical

connectivity, point-to-multipoint XR connectivity, IP link provisioning, B5G-OPEN Slice and

telemetry services.

To realise such services, the control plane architecture must comply with the following set of

requirements: perform context, connectivity, topology and physical impairments discovery

and Asynchronous notification of topology and connectivity object changes

The document describes in detail the proposed control plane architecture, summarized in

section 5 and shown in the figure above. The major parts of the architecture include: service

orchestration and planning (sections 6, 7 and 8), packet optical-integration systems (section 9),

telemetry (section 10) and intent-based networking (section 11).

White -
box

TxRxIP
equip. TxRx

TxRx

Line side

Client side

TxRx

TxRx

TxRx

OADM

OADM

OADM White -
box

TxRx

TxRx

TxRx

Line
side

Client
side

TxRx

TxRx

TxRx

IP
equip.

K8S
Node

K8S
Node

OLS SDN controller
[controls OADMs & amplifiers]

K8S
API server

B5G-OPEN NETWORK PLANNER

Management of
network

monitoring /
autonomic
networking

Dimensioning
& Analysis

Module

Provisioning &
Discovery
Module

Optical Path
computation

Module

IP SDN
controller

Optical SDN controller

TAPI Optical Network Orch.PON SDN
controller

XR

OLT

XR SDN
controllerPON

 D4.1 GA Number 101016663

An initial proposal of the necessary interfaces and protocols to be used among the different

control plane components and towards external systems and network elements is presented in

Section 12. The detailed specification will be provided in the next deliverable.

In a nutshell, this document introduces a number of control plane innovations to be developed

within WP4, namely:

- Control of optical multiband network, that is, to exploit the multiband capabilities of

optical devices, both transmission and switching elements.

- Physical layer impairments of multiband optical networks, where the increasing number

of non-linear effects need to be considered in the control plane for a better

management and orchestration of the network and services.

- Control of transparent multi-domain, that is, the ability to setup connections in a

transparent manner, across multiple domains and network segments.

- Packet/optical integration, where the gradual introduction of pluggable interfaces

directly in the switches need to be incorporated into the control plane.

- Access/Metro integration, with control of different access technologies (PON, LiFi).

- Telemetry, where the ability to continuously monitor the network is critical as a first

step to diagnose its behaviour and take decisions in case of malfunctioning.

- External planning tools, where multiple algorithms can be defined to optimise network

behaviour and operations, making use of quality data at different levels (optical and

packet level).

- Network automation, which ultimately implies autonomous operations of the network

to further reduce human intervention, leading to a self-managed network based on

telemetry data and historical experience, along with AI/ML techniques for closing the

observe-decide-act loop.

 D4.1 GA Number 101016663

TABLE OF CONTENTS

TABLE OF CONTENTS ... 10

1 Introduction ... 1

2 Initial requirements and Use Cases ... 2

2.1 Initial considerations.. 4

2.2 Service Provisioning/activation over Domainless multi-band network 4

2.3 Discovery Use cases ... 5

2.4 Design use cases .. 6

2.5 Support to Fault Management Use cases .. 6

2.6 Autonomous Network Operation use cases .. 6

3 B5G-OPEN control plane services .. 7

3.1 Point to Point Optical Connectivity .. 8

3.2 Point to Point DSR Connectivity ... 9

3.3 Point to Multipoint XR connectivity ... 9

3.4 IP link provisioning ... 9

3.5 Packet/IP Connectivity ... 10

3.6 P2MP Access Connectivity ... 10

3.7 B5G-OPEN Network Slice ... 10

3.8 Other services .. 11

3.8.1 Telemetry services ... 11

3.8.2 Optical Topology Services .. 11

3.8.3 Optical Path Computation Services ... 11

4 Existing Frameworks .. 12

4.1 Control Plane Frameworks .. 12

4.1.1 ONOS ... 12

4.1.2 OpenDayLight .. 12

4.1.3 TeraFlow .. 13

4.2 Existing NOS frameworks ... 13

4.2.1 Packet/Optical nodes ... 13

4.2.2 SONiC ... 14

4.2.3 Stratum .. 15

4.2.4 Proprietary solutions ... 15

4.3 Telemetry Frameworks .. 16

4.3.1 IPFIX ... 16

4.3.2 gRPC ... 16

 D4.1 GA Number 101016663

4.3.3 Kafka .. 17

4.3.4 Logstash and Elastic Search ... 18

4.3.5 InfluxDB, Telegraf, and Grafana ... 18

4.4 Orchestration ... 19

4.4.1 OSM ... 20

4.4.2 ONAP ... 22

4.4.3 Alternatives based on containers .. 23

4.5 QoT estimation tools ... 25

4.5.1 GNPy .. 26

4.5.2 OLC-E Tool ... 26

5 Overview of B5G-OPEN Control, Orchestration, and Telemetry .. 31

5.1 Main Innovations at the B5G-OPEN control plane ... 31

5.2 Initial Assumptions on Optical Device Configuration and Control 33

5.3 Service Orchestration and Planning ... 34

5.4 Optical Packet Integration ... 34

5.4.1 Campus Mode .. 34

5.4.2 Telco Mode .. 35

5.5 Telemetry and Intent Based Networking ... 35

6 SDN Control of Optical Multiband Networks ... 37

6.1 Introduction ... 37

6.2 TAPI-enabled Optical Network Orchestrator (TAPI NOrch) ... 37

6.2.1 Interfaces ... 38

6.2.2 Exported North Bound Interface ... 39

6.3 Optical Controller .. 40

6.4 OLS Controller .. 41

6.5 Optical Path Computation Element ... 43

6.6 Multi-domain scenarios ... 44

7 Access Control ... 46

7.1 The Framework of TDM-PON Configuration and Control .. 46

7.1.1 First Alternative: Via the PON Manager ... 46

7.1.2 Second Alternative: via a PON Controller .. 47

7.1.3 Third Alternative: Direct interfacing to the pluggable OLT – Integration to the

platform via the B5G-ONP app .. 48

7.1.4 Fourth Alternative: Direct interfacing to the pluggable OLT – Integration to the

platform via the B5G Packet Controller ... 49

7.1.5 Discussion on the alternative considerations .. 50

 D4.1 GA Number 101016663

7.2 LIFI Control .. 50

8 Orchestration ... 52

8.1 IT and network resources orchestration .. 52

8.2 B5G-ONP modules ... 53

8.3 Interactions of the B5G-ONP with the SDN controllers ... 53

8.4 Interactions of the B5G-ONP with the IT orchestrator systems 54

9 Packet/optical integration ... 57

9.1 discussion on architectural options ... 57

9.1.1 Reference scenario and proposed solutions .. 57

9.1.2 Packet-optical node ... 60

9.1.3 SDN controller applications ... 62

9.1.4 Experimental evaluation .. 62

9.2 Sonic generic architecture ... 64

9.3 Pluggable management and control .. 67

9.4 P2MP Pluggable Management and Control ... 68

10 Telemetry platform... 70

10.1 B5G-OPEN Telemetry Architecture .. 70

10.2 Telemetry Data Sources ... 73

10.2.1 TAPI Optical Network Orchestrator / SDN controller ... 73

10.2.2 LiFi Access Points ... 74

10.2.3 Data Collection .. 74

10.2.4 Spectrum monitoring ... 75

10.3 Packet flow monitoring using hashing techniques .. 76

10.3.1 Bloom Filters .. 76

10.3.2 HyperLogLog .. 77

10.3.3 Count-Min Sketch .. 77

11 Autonomous Networking and Quality Assurance ... 78

11.1 Autonomous Networking... 78

11.2 Single-Domain and Multi-Domain Quality Assurance .. 79

12 Initial Considerations on Interfaces and Protocols ... 81

12.1 Openconfig for Packet and Optical .. 81

12.2 P4 and P4 Runtime .. 83

12.3 Transport API (TAPI)... 84

12.3.1 Generic Aspects ... 84

12.4 Path Computation.. 85

12.5 ONOS Native .. 86

 D4.1 GA Number 101016663

12.6 OpenROADM ... 86

12.7 Interfaces for the Telemetry Platform ... 87

12.8 Control of pluggable modules.. 88

12.8.1 Coherent pluggable modules ... 88

12.8.2 PON pluggable modules .. 88

12.9 LiFi Integration ... 88

12.10 B5G-OPEN Slicing North Bound Interface .. 89

12.11 Kubernetes .. 89

12.12 Open XR control interface ... 90

13 Conclusions and next steps .. 91

14 References .. 94

 D4.1 GA Number 101016663

List of figures

Figure 3-1 Macroscopic B5G-OPEN architecture and Service instantiation interfaces. 8

Figure 3-2 Point to Point Optical Connectivity Service. .. 9

Figure 3-3 IP link provisioning between the whiteboxes. ... 10

Figure 3-4 multiple IP link provisioning between the whiteboxes using P2MP XR. 10

Figure 3-5 Example of slice information model .. 11

Figure 4-1 NFV Orchestration scope (source: [Mamu19]) .. 20

Figure 4-2 OSM Modules (source: [OSMRel4]) ... 21

Figure 4-3 OSM life-cycle management for a new dedicated channel for asynchronous

communications between components (source: [OSMRel4]) .. 21

Figure 4-4 ONAP system (source: [Slim17]) .. 23

Figure 4-5 Open Baton Components (source: [OpenBaton]) .. 24

Figure 4-6 The flow chart of the OLC-E’s multi-band routing engine. .. 30

Figure 5-1 B5G-OPEN Control, Orchestration and Telemetry architecture. 34

Figure 5-2 Packet/Optical integration (campus / p4 modes) .. 35

Figure 5-3 Packet/Optical integration (telco / router modes) .. 35

Figure 5-4 B5G-OPEN Control and Orchestration architecture .. 36

Figure 5-5 B5G-OPEN Intent Based Applications (IBN) and Knowledge-Sharing. 36

Figure 6-1 Control Plane of Partially Disaggregated Optical Networks with OLS controller 37

Figure 6-2 Transport API (T-API) Optical Network Orchestrator with the BG5-Open control plane

functional architecture, showing the usage of an externalized path computation function 38

Figure 6-3 Internal diagram of the Transport API (T-API) Optical Network Orchestrator with

externalized path computation ... 39

Figure 6-4 Transport API (T-API) Optical Network Orchestrator: logical view of a TAPI topology

for an optical domain, based on the TAPI Core Information model ... 40

Figure 6-5 ADVA OLS Controller Northbound Interfaces .. 41

Figure 6-6 ADVA disaggregated OLS network example .. 43

Figure 6-7 Corresponding model instantiated on the TAPI interface ... 43

Figure 6-8 Control plane architecture for the multi-OLS scenario, showing a back to back

add/drop-add/drop configuration. ... 45

Figure 7-1 B5G-OPEN Control of PON through the PON Manager ... 47

Figure 7-2 B5G-OPEN Control of PON through the PON Controller ... 48

Figure 7-3 Direct communication with the pluggables (B5G-ONP app integration) 49

Figure 7-4 Direct communication with the pluggables (Packet Controller integration) 50

Figure 7-5: LiFi-XC AP .. 51

Figure 7-6: Initial assumption for LiFi control ... 51

Figure 8-1 Coordination of Kubernetes cluster from B5G-ONP .. 53

Figure 8-2 Kubernetes cluster module (source: [K8s]) .. 54

Figure 8-3 Different API versions access to a unique persisted data .. 56

Figure 9-1 Traditional SDN architecture for transponder-based optical networks. 58

Figure 9-2 Exclusive hierarchical control plane solution ... 59

Figure 9-3 Concurrent hierarchical control plane solution ... 59

Figure 9-4 Exclusive end-to-end intent setup workflow ... 60

Figure 9-5 Concurrent end-to-end intent setup workflow. .. 60

Figure 9-6 Packet-Optical node architecture: the packet-optical node exposes P4 Runtime and

NETCONF interfaces toward the control plane. .. 61

Figure 9-7 Testbed topology. .. 62

 D4.1 GA Number 101016663

Figure 9-8 Distribution of Te2e over 30 experiments using Concurrent workflow, average value

Te2e = 2.38 s. .. 63

Figure 9-9 Distribution of Te2e over 30 experiments using Exclusive workflow, average value

Te2e = 3.59 s. .. 63

Figure 9-10 SONiC system architecture .. 65

Figure 9-11 Pluggable management and control architecture ... 68

Figure 9-12 P2MP Control integration in B5G-OPEN .. 69

Figure 10-1 Overall network architecture ... 71

Figure 10-2 Measurements telemetry architecture and workflow .. 72

Figure 10-3 Events telemetry architecture and workflow .. 72

Figure 10-4 ADVA Flex-Telemetry agent ... 75

Figure 10-5 Nokia Optical Network testbed .. 75

Figure 11-1 Intra domain Control loop architecture ... 79

Figure 11-2 Intent-based networking in the intra-domain ... 80

Figure 11-3 Intent-based networking in multi-domain scenarios ... 80

Figure 12-1 Hierarchy of components of an open terminal device .. 82

Figure 12-2 P4 development workflow [https://p4.org/] ... 83

Figure 12-3 TAPI representation of a digital service between pluggables across an optical

network ... 85

Figure 12-4 Exemplified TAPI Optical Network Orchestrator -.OPCE interaction. 85

Figure 12-5 Extract of OpenROADM tree for multiband support ... 87

Figure 12-6: Basic model for LiFi ... 88

 D4.1 GA Number 101016663

1

1 INTRODUCTION

This document details the Infrastructure Control and Service Management architecture to be

implemented in the B5G-OPEN Control, Orchestration and Telemetry System (control plane

for short), along with a set of initial requirements, and existing frameworks. The document

comprises three main parts, each one containing multiple chapters.

The key B5G-OPEN goals and major innovations, as outlined in the proposal, include the

design of a network architecture featuring multi-band, optical continuum, integrated access,

end-to-end network orchestration and autonomous operations. The first part includes

Section 2 which overviews a set of initial requirements and use cases, carefully developed

with WP2, and extended to the control plane. Section 3 further develops on the services that

the control plane of B5G-OPEN must support, for instance, point-to-point optical

connectivity, point-to-multipoint XR connectivity, IP link provisioning, telemetry and optical

topology services, etc.

In the second part of the document, Section 4 provides a thorough review of existing

frameworks in the literature, some of them will participate in the design of the control plane

architecture. Examples include an overview of most popular control plane frameworks and

network operating systems, different tools for implementing network telemetry systems,

main orchestration frameworks and Quality of Transmission (QoT) estimation tools.

The third part of the document comprises multiple chapters devoted to the definition of

different parts of the control plane architecture. In this sense, Section 5 overviews the major

parts of the architecture, including service orchestration and planning, optical-packet

integration systems and telemetry and intent-based networking. Section 6 introduces the

SDN control of optical multi-band networks, while Section 7 explains the control of different

access technologies (PON, LiFi, etc). Section 8 is devoted to the IT and network resource

orchestration platform, and Section 9 to the packet-optical integration. Section 10 overviews

the architecture of the telemetry system, in charge of monitoring the quality of network

connectivity at the optical level and packet flow level. Section 11 overviews the requirements

and architecture for autonomous network operations. Next, Section 12 provides further

details on the interfaces and systems participating in the whole control plane architecture,

described from Section 5 until Section 11.

Finally, Section 13 concludes this document with a summary of its main contributions to the

B5G-OPEN project and next steps.

 D4.1 GA Number 101016663

2

2 INITIAL REQUIREMENTS AND USE CASES

The B5G-OPEN control and management plane requirements follow the need to support the

project’s key features showed in the following table and derived from Deliverable D2.1:

Key Feature Description

Multi-Band

operation

Availability of bands O, E, S, C, L in optical fibres to provision: a) the required

capacity, and b) service based on requirements

Optical

continuum

Operate connectivity extending the principles of optical bypassing of nodes in

the Multi-Band B5G-OPEN network, allowing optical slicing based on service

requirements and crossing network segments (i.e. access, metro, core, etc.)

Integrated

access

Operate and control service regardless of the access technology (Mobile, Fixed,

WiFi, LiFi)

E2E network

orchestration

Operate service and network operations from the Access Point to the Cloud

node, which may include monitoring and AI/ML

Autonomous

operation

Based on Intent-based and zero-touch networking paradigms, autonomous

operation is built using closed-control loops at various levels, from device to

network. Empowered by a distributed AI/ML-based engine providing data

collection and intelligent aggregation, analysis, and acting on the network

devices, autonomous operation enables coordinated decision-making across

domains

Table 1.1: B5G-OPEN key features

Multi-Band technologies offer the potential to facilitate the implementation of an optical

bypass at the central office for selected traffic, leading to the concept of optical continuum

and removing unnecessary electronic intermediate terminations. Based on the requirement

of the traffic that need to be transported, the electronic termination may be located at

different points of the network. Moreover, components such as transmission systems and

optical switches/ROADMs may operate in one or multiple bands depending on vendors’

choices and carriers’ network implementation. Clearly, such an architecture goes beyond the

concept of network segmentation since no clear and uniform demarcation points are

identifiable. Also, the availability of programmable pluggable modules implementing

sophisticated functions that can be fitted into Ethernet white boxes makes weaker the

boundaries between network segments. In fact, the same boxes, having packer layer

switching capabilities, could host both programmable optical pluggable modules and/or

modules implementing access functionalities (PON transceivers) resulting in packet/optical

devices integrating aspects typical for both access and metro/regional segments.

Moreover, it can be easily foreseen that, in the near future, other pluggable modules will

appear implementing functions now typical of monolithic devices. In such a context, the B5G-

OPEN control plane must overcome the traditional approach where every network segment

is under the control of a dedicated controller, eventually coordinated by a parent one. Also,

the rigid subdivision of control functions dedicated to a specific network layer (packet or

optical) must be replaced by a more flexible approach to simplify the interaction with the

novel pluggable modules that, despite being fitted into a packet device, need configurations

 D4.1 GA Number 101016663

3

typical of other network segments. To reach this goal, the B5G-OPEN control plane could

leverage concepts from the cloud environment and adopt a microservice architecture based

on containers that offer easy and rapid introduction of new features as soon as the data plane

technology evolves and seamless migration of functionalities between modules to follow

network evolutions, e. g. when pluggable modules integrating new features are introduced.

A containers’ orchestration solution such as Kubernetes could provide even more flexibility

in terms of scalability and coordination among all the control plane modules.

Such a modular architecture must rely on standard and open interfaces between the control

plane functions and towards the devices. The Open Networking Foundation (ONF) [ONF] has

developed a standard API called Transport API (TAPI) which has become a de-facto standard

in the field of SDN controllers. At device level, instead, two data models are catalysing the

attentions of the market, with different degree of adoption mainly depending on the device

type (X-ponder or ROADM): OpenConfig and OpenROADM. In particular, to support Multi-

Band, the control plane must take into account all the constraints required to provision end-

to-end media channels (i.e. spectral resources) in such an environment and provide

procedures such as automatic inventory management, Multi-band (MB) impairment-aware

path computation, MB topology abstractions and automatic identification of candidate pre-

validated configurations. Generally speaking, the above-mentioned existing data models are

already (or require very little adaptation for) supporting MB networks. What needs to be

defined is a kind of “rule of thumb” for using them in a common way. Nevertheless, path

computation algorithm must be extended to support the presence of several transmission

bands. Also, new protection/restoration schemes must be developed to exploit the larger

bandwidth available thanks to MB.

Since the B5G-OPEN reference network architecture is intrinsically ‘domain-less’, in the sense

that, as stated above, there are no clear demarcation points between the network segments

that today correspond to the access, metro and part of the core, the B5G-OPEN control plane

must implement end-to-end orchestration of services from the Access Point to the Cloud

node with new and innovative models beyond the traditional packet over optical approach.

In this field, several open-source initiatives are available with different degrees of complexity

and flexibility, but the “domain-less” perspective of the B5G-OPEN network requires a re-

consideration of the traditional MANO architecture and a different approach to the control

modules interface, also adopting a lightweight virtualization method relying on container

management or serverless computing.

The high bandwidth availability guaranteed by Multi-Band is an opportunity for efficient

network sharing at the optical layer. Also, innovative pluggable modules in the access

segment (e. g. Tibit) and the novel optical point-to-multipoint pluggables (e. g. XR-optics) are

key drivers for sharing aggregation resources. Network slicing allows taking full advantage

from the opportunity offered by these technologies and, therefore, it is another feature that

the B5G-OPEN control plane must support. For what concerns XR-optics, even if developing

a control plane for it is not an objective of the project, the B5G-OPEN control plane should

support network services exploiting the capabilities offered by the novel point-to-multipoint

pluggable transceivers. Currently, among the most used data model for optical networks,

only T-API encompasses the concept of point-to-multipoint connectivity, while device models

like OpenConfig and OpenROADM require specific extensions.

Intent-based networking and autonomous operations are mandatory for the innovations

envisioned by the project. The control plane architecture should provide an abstracted view

 D4.1 GA Number 101016663

4

of the network and close-control loops operated at various levels, from device to network,

must be implemented in support of distributed AI/ML techniques to enable coordinated

decision-making across control domains. Advances in optical technology with the

introduction of coherent transmission thanks to DSP-based transceivers offered unprecedent

opportunities for massive monitoring of the physical layer to detect and proactively correct

soft-failures. However, collection of real time monitoring data can potentially saturate both

the bandwidth of management interfaces and the CPU power of the servers. The B5G-OPEN

control plane should adopt a collaborative approach between the network controller and

node agents for the implementation of the streaming telemetry systems to reduce the

amount of monitored data and an architecture based on the publish/subscribe paradigm to

selectively address data only to the interested modules.

2.1 INITIAL CONSIDERATIONS
The first main functionality to be provided by B5G-OPEN Control plane is the Multi-Band

Optical Network operation. B5G-OPEN Use cases are based on ONF TF-547 v1.1 [TR-547],

provides a set of use cases for control and management of optical networks based on TAPI,

which have been adopted by Telecom Infra Project (TIP) MUST Optical sub-group. This is

motivated by the fact that B5G-OPEN partners are actively participating in such

standardization activities and are in an excellent position to provide feedback on

implementation, along with preliminary considerations regarding their applicability to multi-

band networks (since TR-547 mostly considers single band operation),

Fig. 2.1 Use case taxonomy (source TIP)

A set of use cases that showcase the B5G-OPEN COM capabilities are described below:

2.2 SERVICE PROVISIONING/ACTIVATION OVER DOMAINLESS MULTI-BAND NETWORK
This set of use cases comprise setting up and tearing down the required Connectivity services

over a multi-band enabled network, including point-to-point and point-to-multi-point, which

are described in section 3. The provisioning operation needs to be triggered via

programmatic interface. The request might come directly from the network operator, or via

another component of B5G-OPEN Control and Management plane.

It is important to consider that, even though the network can be comprised of multiple

segments (access/aggregation/core), B5G-OPEN control plane will treat the network as

“domainless” and will allow connectivity to be requested among any point of the network.

This might comprise that the service can cross multiple OLS.

 D4.1 GA Number 101016663

5

The services to activate are detailed in section 3.

[REQ.PROV.1] The provisioning should consider multiple constraints in the requests, in order

to fulfil the requirements of the applications described in WP2. Those constraints should

consider bandwidth, delay, jitter and reliability.

2.3 DISCOVERY USE CASES
This group of use cases targets the retrieval of information available from B5G-OPEN control,

orchestration and telemetry system including topology, service-interface-points,

connectivity-services and connections. This section addresses Discovery Aspects from the

point of view of an end user, typically understood as a human actor or an Operator Business

Support System or Operations Support System. This does not exclude the fact that, internally

and considering partially disaggregated architectures with a dedicated OLS controller, B5G-

OPEN control plane needs to obtain Open transponders information directly from the open

terminals (OTs) devices and IP/Optical whiteboxes using Netconf/OpenConfig, which is part

of the discovery process

The following operations need to be supported:

[REQ.DIS.1] Context discovery: A “context” in an abstraction that allows logical isolation and

grouping of network resources. The context in B5G-OPEN will expose the set of Service-

interface-points, which represent the available customer-facing point from where

connectivity network services can be requested.

[REQ.DIS.2] Connectivity discovery: B5G-OPEN will automatically discover network

connectivity services in the DSR layer, which model digital signals and PHOTONIC_MEDIA

layer, in particular media channels as per [ITU-T G.872]. The list of connectivity services

created within the context will need to be provided.

[REQ.DIS.3] Topology discovery: The control plane needs to provide a dynamic

representation of the network based on a synchronization with the network elements. The

topology is described in terms of nodes and links that enable the forwarding capabilities of

the network resources. Nodes are an abstraction of the forwarding capabilities of a network

element and will contain collection of ports and the potential to enable forwarding between

those ports. The links are an abstract representation of the adjacency between nodes in the

topology.

[REQ.DIS.4] Asynchronous notification of topology changes: B5G-OPEN control system needs

to send events exposing changes in links, nodes, and node edge points. These events are

triggered, for example, upon network failures or due to network upgrades.

[REQ.DIS.5] Asynchronous notification of connectivity object changes: B5G-OPEN control

system needs to send events exposing changes in the connectivity services.

[REQ.DIS.6] Physical layer impairments discovery: WP3 has defined an impairment model for

the muti-band optical layer. The B5G-OPEN control plane needs to retrieve from the network

the necessary information to feed the model specified in Deliverable D3.1.

 D4.1 GA Number 101016663

6

2.4 DESIGN USE CASES
There use cases are aimed at providing support for the Network Operator to design the

packet/optical network. The B5G-OPEN COM will provide:

- [REQ.UC.DES.1] Network Dimensioning/ Capacity planning: These use cases

correspond to a network design phase, when the network needs to be conceived from

scratch (greenfield design), or new equipment should be added to an existing network

(brownfield design). The output produced is commonly composed of a bill-of-materials

of the network equipment to deploy, as well as traffic engineering policies to enforce.

Optimization problems involved are typically large, considering aspects like fault

tolerance targets, and worst-case latency constraints policies. In this use cases, it is

accepted algorithm running times in the order of minutes or even longer, since their

results are not applied immediately to the network.

- [REQ.UC.DES.2] Network provisioning: These use cases correspond to the on-demand

allocation of resources, to be completed in nearly real time, and that end-up in the

reconfiguration of the existent equipment (i.e. but not the commissioning of new

equipment in the network). For instance, capacity on-demand use cases result in

situations where new incoming service requests should be provisioned, with target

times in the order of seconds. These time constraints ay become more stringent when

the algorithms should satisfy resource allocations corresponding to network recovery

use cases.

2.5 SUPPORT TO FAULT MANAGEMENT USE CASES
Pain-points of Network operators include understanding the cause of services not working

as expected. The B5G-OPEN Control and Management system will provide advanced

functionalities for the network operator in terms of supporting the fault management

process.

- [REQ.UC.FM.1] Degradation detection/location in single domain/multi-domain

 This use case targets at modelling and evaluating the performance of lightpaths traversing

multiple domains. To this end, models that characterize an optical connection within an

optical domain can be shared, so models for multiple domains lightpaths can be created.

Armed with those models, telemetry measurements are received and compared against

what is expected from the models. This strategy allows detecting degradations, identifying

them, evaluating its severity, and localizing the cause of the failure causing the degradation.

- [REQ.UC.FM.2] Recovery after failure/degradation

This use case complements the previous one by taking action in case that some links and/or

optical bands suffer important Quality of Transmission (QoT) degradation. In such a case, the

control plane will detect such degradation via telemetry and provision an alternative path

and/or band to re-allocate the flows.

2.6 AUTONOMOUS NETWORK OPERATION USE CASES
In addition to being able to set up the necessary connectivity, B5G-OPEN Control System will

provide autonomous network operation by having closed closed-control loops at various

levels, from device to network.

 D4.1 GA Number 101016663

7

- [REQ.UC.AN.1] Quality assurance based on Intent-based Networking (IBN)

This use case envisions using IBN-based applications to assure the quality of the multi-

band optical transport network. A specific IBN application need to accurately model

optical links, nodes and the lightpaths, considering physical layer modeling (noise,

filtering…). Real-time telemetry will continuously feed the IBN applications to ensure the

awareness of the network state. The IBN applications will be able to anticipate quality

issues in the network and take the necessary steps to solve them.

- [REQ.UC.AN.2] Automatic assignment of flows to multi-band slices

Thanks to the multi-band capabilities, B5G-OPEN network architecture is able to allocate

multiple per-band slices. This use case is aimed at providing an autonomous operation where

the control plane identifies the flows and based on AI/ML, takes the decision on assigning

flows to a relevant slice. In the case that there are no slices that can guarantee the

connectivity needs of the flows, the control plane will automatically create a new slice.

3 B5G-OPEN CONTROL PLANE SERVICES

The considered use cases, related requirements, and detailed network architecture from

WP2 have been used as a starting point to identify a set of Control Plane Services, to be

elaborated within the scope of WP4.

In this context, a control plane service is understood as a network service whose lifetime is

managed by the B5G-OPEN control plane – in other words, it is responsibility of the B5G-

OPEN control, orchestration and telemetry system – and it is established via one or more

North Bound Interfaces (NBI), dynamically and upon demand. This can apply regardless of

the time scale of the provisioning.

Similar to the aforementioned use case taxonomy, control plane services are macroscopically

grouped into Provisioning & Discovery, offering APIs and GUI for providing network topology

info, and for allowing provisioning use cases. In addition, there are additional services related

to Telemetry and Path Computation along with Network dimensioning & analysis module.

This includes required resource allocation & capacity planning algorithms based on resource

occupation information.

This is shown in the Figure 3-1, with a simplified representation of the control plane

architecture. The architecture is described later on in Section 5 (overview and main

considerations), Section 6 (Optical network control), Section 7 (Access control integration)

Section 8 (IT orchestration), Section 9 (for packet/optical integration) and Section 10 (for

Telemetry).

 D4.1 GA Number 101016663

8

Figure 3-1 Macroscopic B5G-OPEN architecture and Service instantiation interfaces.

The following subsections summarize such services, presenting a brief description and

applicability statement.

3.1 POINT TO POINT OPTICAL CONNECTIVITY
The Point-to-Point Optical Connectivity service addresses point to point connection between

optical ports, corresponding to, for example, the line ports of packet/optical devices or

discrete transceivers (when the configuration remains at the OTSi layer) or corresponding to

ROADM add/drop ports (when the configuration focuses on the media channel layer) as

shown in Figure 3-2. It mainly involves the provisioning of a media channel (provisioning of

raw optical spectrum) within a given optical band, and it is characterized by its effective

frequency slot. The dynamic provisioning and deployment of the service involves different

elements of the control plane architecture (see Section 5). This can be done in an integrated

scenario or in a full or partially- disaggregated scenario, via a dedicated Open Line System

(OLS) controller, as shown. It is worth mentioning that this service applies at the photonic

media layer only and deals with allocation of media channels (variable sized frequency ranges

corresponding to optical spectrum). As shown in the figure, macroscopically, it relies on an

arrangement of controller(s) -- including the OLS controller in a partially disaggregated

scenario – exporting standard interfaces. Further details will later be introduced regarding

the final decomposition of the controllers and applicable TAPI North Bound Interfaces

specifications and modelling.

White -
box

TxRxIP
equip. TxRx

TxRx

Line side

Client side

TxRx

TxRx

TxRx

OADM

OADM

OADM White -
box

TxRx

TxRx

TxRx

Line
side

Client
side

TxRx

TxRx

TxRx

IP
equip.

K8S
Node

K8S
Node

OLS SDN controller
[controls OADMs & amplifiers]

K8S
API server

B5G-OPEN NETWORK PLANNER

Management of
network

monitoring /
autonomic
networking

Dimensioning
& Analysis

Module

Provisioning &
Discovery
Module

Optical Path
computation

Module

IP SDN
controller

Optical SDN controller

TAPI Optical Network Orch.PON SDN
controller

XR

OLT

XR SDN
controllerPON

 D4.1 GA Number 101016663

9

Figure 3-2 Point to Point Optical Connectivity Service.

3.2 POINT TO POINT DSR CONNECTIVITY
This service addresses Digital Signal Rate (DSR) provisioning between two stand-alone

transceivers or whiteboxes with integrated transceivers. It is part of IP link provisioning

between elements (packet/optical nodes) and relates to creating, dynamically and real time,

connectivity to support packet transmission between whiteboxes. Given end transceivers,

rate and applicable constraints, the control plane configures and activates the “line part” of

the transceiver (modulation, spectrum). Note that the creation of a DSR connectivity service

typically triggers the interaction with the optical SDN controller and OLS controller, including,

eventually, the creation of OLS point to point connectivity (see above).

3.3 POINT TO MULTIPOINT XR CONNECTIVITY
This service addresses the provisioning of a point to multipoint connection from a hub to

several leaves. The service will be realised by means of OpenXR [Wel21] configuration of the

transceivers and relies on a dedicated sub-controller. This OpenXR controller is under the

control of the B5G-OPEN orchestrator, and logically provides multiple point-to-point links

between routers attached to the hub (root) and leaves of the system.

3.4 IP LINK PROVISIONING
Related to the previous service, and given an existing DSR service, the B5G-OPEN

orchestrator interacts with IP SDN controller to configure the transceivers as IP interfaces in

the whitebox. The newly created DSR connectivity becomes a logical interface (e.g., serialXX,

ethXX), and The DSR connectivity is seen by the device as a physical port with an associated

logical interface (...) which can be used to forward packets (of any kind, not only IP, for

example LLDP, IS-IS, etc). This is shown in Figure 3-3, and the relevant list of operations to

perform can cover e.g., interface activation, IP address configuration, etc.

3

2

NETCONF
AGENT

1

ROADM
R1

ROADM
R2

AMP1 AMP2

OLS
Controller

Optical
Controller(s)

Packet / Optical
Node

Media Channel (MC) or OCh Point to Point Connectivity (add/drop to add/drop)

North Bound Interface
Connectivity Request

OTSiMC Point to Point connectivity (line port to line port)

 D4.1 GA Number 101016663

10

Figure 3-3 IP link provisioning between the whiteboxes.

Figure 3-4 multiple IP link provisioning between the whiteboxes using P2MP XR.

3.5 PACKET/IP CONNECTIVITY
Generally speaking, IP connectivity relies on the existence of IP links between whiteboxes.

When we consider packet or IP connectivity, we refer to configuring packet switching at the

Packet/Optical nodes. This configuration can rely, typically, on IP forwarding or in more

advanced SDN-based solutions, such as those based on P4. In this context, an SDN controller

may either i) configure IGP/routing protocols (such as OSPF or BGP) or ii) provide flow

configuration for flow switching, based on e.g., addresses, ports.

For non-connection-oriented IP, (regular IP routing) given end IP routers (whiteboxes), rate,

IP QoS, and constraints, it is responsibility of the B5G-OPEN Orchestration platform to check

(via Dimensioning & analysis module) if there is enough IP capacity and take the decision of

making the required IP link/DSR provisioning.

3.6 P2MP ACCESS CONNECTIVITY
The orchestrator is also responsible to ensure P2MP connectivity with the access segment.

This involves the configuration of the PON controller and is detailed in Section 7

3.7 B5G-OPEN NETWORK SLICE
In this context, a B5G-OPEN slice is defined as a set of interconnected computing and storage

functions, deployed within the B5G-OPEN infrastructure, and which involves the

orchestration of heterogeneous computing, storage, and networking resources.

Computing functions are instantiated within computing servers or nodes, and they are

interconnected using dynamic network connectivity (thus relying on the previously

 D4.1 GA Number 101016663

11

mentioned services). They may correspond to containers (e.g., Cloud Native Functions, CNF)

or Virtualized Network Functions (VNF).

Such service information model shall contain a list of functions, their interconnection, and

related constraints in terms of bandwidth and other KPIs. Two critical KPIs to consider are:

• End-to-end latency: measured as the maximum delay between network functions.

• End-to-end estimated jitter: measured as an estimation of e.g., the standard

deviation of the end-to-end latency in the connection between network functions.

In this regard, the B5G-OPEN orchestrator needs to be able to provision slices using

Kubernetes [K8s] nodes (see Figure 3-5) as follows: given a set of K8sS services to instantiate,

and optionally the K8s clusters where they should be instantiated (if not, enough info for

optimizing the placement should be given), and a list of service-to-service connections to

configure (s1, s2, Gbps, end-to-end KPIs), then compute the optimal service placement, IP

capacity, optical capacity needs, satisfying the end-to-end KPIs. Then, the instances of the

services in the K8S are automatically provisioned, as well as the planned network resources.

Figure 3-5 Example of slice information model

3.8 OTHER SERVICES

3.8.1 Telemetry services

At any part of the control plane architecture, systems and devices may export telemetry

services. Telemetry clients may connect and be updated with events, telemetry data etc. The

expected behaviour of clients is to connect to the Telemetry System, as described in Section

10.

3.8.2 Optical Topology Services

Clients MUST be able to retrieve the topology of the underlying optical network. This means

being able to retrieve the set of links, nodes, and ports associated with the different layers

and, notably, including additional information that may be useful for externalized path

computation entities.

3.8.3 Optical Path Computation Services

Clients MUST be able to perform path computation on the underlying topology. This can be

consumed internally or left for external clients. The details are provided in Section 6.5

 D4.1 GA Number 101016663

12

4 EXISTING FRAMEWORKS

4.1 CONTROL PLANE FRAMEWORKS
Regarding the control plane, this section reports the open-source initiatives for the SDN

control of the network. The B5G-OPEN controller will be required to control not only the

disaggregated optical transport network but also the packet-based network (e.g., supporting

P4-based devices).

The main open-source initiatives raised from the traditional SDN community are

OpenDaylight [ODL] and the Open Network Operating System [ONOS]. Both include some

support for the control of optical transport networks. More recently, the TeraFlow project

[Vil21] started the development of a new open-source SDN controller specifically oriented

toward a cloud-native architecture, currently this controller does not support optical

transport networks.

4.1.1 ONOS

The ONOS (i.e., Open Network Operating System) SDN controller is an open-source initiative

promoted by the Open Networking Foundation (ONF) with the support of many of the most

important telecommunication vendors and operators [ONOS]. ONOS has been designed to

meet the scalability and reliability needs of operators wishing to build carrier-grade solutions

that leverage the economics of white box merchant silicon hardware while offering the

flexibility to create and deploy new dynamic network services with simplified programmatic

interfaces. For this purpose, ONOS is based on a modular architecture that facilitates the

development and the deployment of new modules such as: novel network applications,

additional northbound interfaces, additional southbound drivers, and protocols.

Within the ONF community, ONOS is part of a wider set of initiatives which includes other

related projects such as the development of switch operating systems and modules for P4-

based hybrid packet/optical devices (i.e., STRATUM, and PINS), the modelling of standard

interfaces toward transport networks (i.e., TAPI), the development of a packet-based

network emulator (i.e., MININET) and several specific applications developed over the ONOS

controller. Such applications are devoted to specific use cases, e.g., the Open and

Disaggregated Transport Network (ODTN) project that in the recent years leaded the

extension of ONOS to control and monitor disaggregated optical transport networks.

With the practical aim of building up on the ONOS controller components developed within

the METRO-HAUL and ODTN projects the B5G-OPEN consortium agreed to select ONOS for

the implementation of the functionalities required at the SDN controller level, both for the

optical layer as well as the packet and aggregation layer.

4.1.2 OpenDayLight

OpenDaylight (ODL) is a modular open platform for customizing and automating networks of

any size and scale. The ODL Project [ODL] arose out of the SDN movement, with a clear focus

on network programmability. It was designed from the outset as a foundation for commercial

solutions that address a variety of use cases in existing network environments. Indeed, ODL

code has been integrated or embedded in more than 35 vendor solutions and apps, and can

be utilized within a range of services. It is also at the core of broader open-source

frameworks, including ONAP [ONAP].

 D4.1 GA Number 101016663

13

Also, the ODL controller is organized following a modular architecture where underlying

network devices and network applications are all represented as objects, or models, whose

interactions are processed within the ODL core.

The ODL controller is not proposed as a part of the B5G-OPEN control plane, however, it

could be considered to support already existing deployments in view of the existence of

devices already integrated in this platform.

4.1.3 TeraFlow

The TeraFlow project [Vil21] is developing a novel cloud native SDN controller for beyond 5G

networks. This new SDN controller is able to integrate with current NFV and MEC frameworks

as well as to provide revolutionary features for flow aggregation, management (service

layer), network equipment integration (infrastructure layer), and AI/ML-based security and

forensic evidence for multi-tenancy. The project proposes an integrated solution for tackling

various challenges of B5G networks to support service providers and telecommunication

operators in their journey towards future networks.

TeraFlow has launched the first release of the TeraFlow OS SDN controller. It has become an

open-source project under the umbrella of ETSI [TFS]. ETSI announced in May 2022 their

decision of hosting the recently created TeraFlowSDN open-source group. ETSI is officially

recognized by the European Union as a European Standards Organization (ESO). The

evolution of this project is being accurately followed by the B5G-OPEN consortium. We will

explore collaboration opportunities, such as the joint Teraflow-B5G-OPEN special session

that took place in EUCNC2022.

4.2 EXISTING NOS FRAMEWORKS
This section reviews currently available open-source tools and standard models for the

implementation of the Network Operating System (NOS) of packet/optical nodes and

traditional optical devices such as transponders, ROADMs and OLSs.

4.2.1 Packet/Optical nodes

The recent advances in transmission technology have driven the introduction of coherent

pluggable transceivers (i.e., pluggables) that can be equipped within packet switching devices

thus building up a hybrid device with packet switching and advanced optical transmission

capabilities. For example, Digital Coherent Optics (DCO) pluggables are commercially

available at rates of 400 Gbps with configurable transmission parameters in different form

factors, such as CFP2 and the smaller QSFP-DD 400ZR. The replacement of standalone

transponders with pluggables in the packet devices directly connected to the switching

elements of the optical network (e.g., ROADMs) drives significant benefits in terms of capital

expenditures, power consumption and footprint. Furthermore, it enables a tight integration

between packet and optical networks. For example, a single device can provide both intra-

data center traffic aggregation and, thanks to coherent pluggables, data center to data center

interconnection.

The hybrid nodes should support programmability on both technological sides. Specifically,

most advanced solutions can be typically programmed exploiting P4 data plane

functionalities and utilizing the P4-Runtime protocol on the packet side, while the optical side

that requires simpler configuration is typically programmed operating on the device YANG

model. This point can be achieved using a variety of protocols depending on the specific

 D4.1 GA Number 101016663

14

implementation (e.g., NETCONF, gRPC, gNMI). Thus, controlling packet-optical solutions

requires a complete Network Operating System (i.e., NOS), that is more complex than

traditional software agents employed in standalone transponders [Sga20, Gio20].

This section describes the different open-source initiatives that are currently targeting to the

implementation of a NOS for hybrid packet optical nodes.

4.2.2 SONiC

SONiC (Software for Open Networking in the Cloud) is an open-source network operating

system based on Linux that can run on switches produced by multiple vendors, based on

several ASICs [SONIC]. This solution offers a full-suite of network functionality, (i.e., BGP) that

has been production-hardened in the data centers of some of the largest cloud-service

providers. It offers the flexibility to create the needed network solutions while leveraging the

collective strength of a large ecosystem and community.

SONiC is already widely used in production intra-DC networks and it is also considered a

strong candidate for packet-optical nodes although some operational extensions are needed

to fill the existing architectural gaps. For example, the current SONiC distribution does not

natively support NETCONF and it does not encompass the needed software components to

operate on coherent pluggable transceivers. The upgrades needed for the support of hybrid

packet/optical nodes are in via of developments in the initiatives reported in the following.

• PINS (P4 Integrated Network Stack): P4 Integrated Network Stack (PINS) is an

industry collaboration among ONF, Intel and Google, bringing SDN capabilities and

P4 programmability to traditional routing devices that rely on embedded control

protocols. Specifically, this project targets the deployment of a dedicated container

on network devices running SONiC. It uses P4 to model the pipeline switch

abstraction interface SAI [SAI], adds externally programmable extensions to the

pipeline and introduces P4Runtime as a new control plane interface for controlling

the pipeline.

• GoldStone: this project utilizes many existing open-source components which have

been developed in Open Compute Project [OCP] and Telecom Infra Project [TIP]

including Open Network Linux [ONL], SONiC, SAI and Transponder Abstraction

Interface [TAI] to provide a full-fledged open-source solution. ONL is used as the base

operating system and provides a wide range of open network device support. On top

of ONL, Kubernetes is employed to enable containerized application management,

which realizes flexible and modular software composition. SONiC/SAI is deployed as

a fleet of containers when the target hardware comprises Ethernet switch ASIC,

whereas TAI is used when the target hardware has coherent transponder

components. Because of its modular architecture, Goldstone can be extended to

support networking devices, which don't have Ethernet ASIC, but may include

conventional transponders, ROADMs or amplifiers in the future.

• Proprietary SONiC distributions: several hardware vendors (e.g., Edgecore, DELL) are

currently providing extended SONiC distributions to assure the support of their

hardware and to offer advanced application while keeping the NOS openness to the

deployment of user applications. Specifically, the support of optical coherent

pluggables is progressing slowly within the community SONiC distribution, but it is

already provided by the Edgecore SONiC.

 D4.1 GA Number 101016663

15

Being SONiC based on a modular architecture exploiting the concept of containers, it

guarantees high flexibility in terms of deployable features. Specifically, users could

implement the required additional features on a custom-built container to be later deployed

on the SONiC operating on the network device. Within the B5G-OPEN this flexibility is

fundamental because it allows the deployment of the network agents and interfaces toward

the SDN controller (e.g., NETCONF agents) building on the work done on previous research

projects. Therefore B5G-OPEN project will concentrate on the utilization of SONiC as the

primary solution as NOS of packet/optical nodes.

Moreover, among the aforementioned projects, PINS is currently the most active for

introducing the full configurability of the packet switching based on P4 and P4Runtime. Its

development and deployment steps are well detailed in the SONiC development roadmap

periodically published on the main SONiC. Therefore B5G-OPEN project will closely monitor

the evolution of PINS for implementing a SDN interface toward the controller.

Finally, since the implementation of the tools enabling the configuration of optical pluggables

is slowly progressing in the community SONiC distribution, B5G-OPEN will consider the

utilization of proprietary SONiC distributions (EdgeCore) for the control of coherent

pluggables.

4.2.3 Stratum

Stratum [Stra] is an open-source silicon-independent NOS for SDN-based networks

developed by the Open Networking Foundation [ONF]. It is building an open, minimal

production-ready distribution for white box switches. Stratum exposes a set of next-

generation SDN interfaces including P4Runtime and OpenConfig, enabling interchangeability

of forwarding devices and programmability of forwarding behaviours.

Stratum avoids the vendor lock-in of today’s data planes (i.e., proprietary silicon interfaces

and closed software APIs) and enables easy integration of devices into operator networks. It

delivers a complete white box switch solution to realize the ‘software defined’ promise of

SDN. The Stratum project broadens the scope of SDN to include full lifecycle control,

configuration and operations interfaces. Envisioned as a key software component of SDN

solutions of the future, Stratum implements the latest SDN-centric northbound interfaces,

including P4, P4Runtime, gNMI/OpenConfig, and gNOI. It does not embed control protocols,

but instead is designed to support either an external NOS or to work with NOS functions

running on the same embedded switch.

Some partners within the B5G-OPEN consortium have experience with this NOS, that

however is not considered as the first option because the planned development is more

oriented toward the support of the packet side of the device with limited focus toward the

support of pluggables. However, it could be considered for operating devices already

available at the partners laboratories, especially if advanced features have to be

implemented based on P4/P4Runtime.

4.2.4 Proprietary solutions

Besides open-source initiatives, there are some proprietary NOS available on the market

offering a standard model of the device that can be used for both device configuration and

monitoring. Among these tools, it is worth mentioning the OcNOS system provided by

IPinfusion [OCN] because it provides the support for the Cassini Whiteboxes including the

utilization of coherent pluggables.

 D4.1 GA Number 101016663

16

Being this tool not open-source it will be considered only as a backup solution for operating

devices already available at the partners laboratories.

4.3 TELEMETRY FRAMEWORKS
This section overviews different frameworks related to telemetry. It covers: 1) protocols and

platforms related to measurements and events data streaming, and 2) engines for search and

visualization.

4.3.1 IPFIX

Internet Protocol Flow Information Export (IPFIX) is an IETF protocol, as well as the name of

the IETF working group defining the protocol [RFC7011]. It was created based on the need

for a common, universal standard of export for Internet Protocol flow information from

routers, probes and other devices that are used by mediation systems, accounting/billing

systems and network management systems to facilitate its services. The IPFIX standard

defines how IP flow information is to be formatted and transferred from an exporter to a

collector.

The IPFIX standards requirements were outlined in the original [RFC3917]. Cisco NetFlow

Version 9 was the basis for IPFIX, the basic specifications for IPFIX are documented in

[RFC7011] through [RFC 7015] and [RFC5103].

A pool of Metering Processes collects data packets at one or more Observation Points,

optionally filters them and aggregates information about these packets. An Exporter then

gathers each of the Observation Points together into an Observation Domain and sends this

information via the IPFIX protocol to a Collector. Exporters and Collectors are in a many-to-

many relationship: One Exporter can send data to many Collectors and one Collector can

receive data from many Exporters.

Like the NetFlow Protocol, IPFIX considers a flow to be any number of packets observed in a

specific timeslot and sharing several properties, e.g., “same source, same destination, same

protocol”. Using IPFIX, devices like routers can inform a central monitoring station about their

view of a potentially larger network.

IPFIX is a push protocol, i.e., each sender will periodically send IPFIX messages to configured

receivers without any interaction by the receiver.

The actual makeup of data in IPFIX messages is to a great extent up to the sender. IPFIX

introduces the makeup of these messages to the receiver with the help of special Templates.

The sender is also free to use user-defined data types in its messages, so the protocol is freely

extensible and can adapt to different scenarios.

IPFIX prefers the Stream Control Transmission Protocol (SCTP) as its transport layer protocol,

but also allows the use of the Transmission Control Protocol (TCP) or User Datagram Protocol

(UDP).

4.3.2 gRPC

gRPC is an open-source high performance Remote Procedure Call (RPC) framework that can

run in multiple environments [GRPC22]. It can efficiently connect services with support for

load balancing, tracing, health checking and authentication. gRPC was initially created by

Google, which used a single general-purpose RPC to connect the large number of

microservices running within and across its datacentres for over a decade. In March 2015,

 D4.1 GA Number 101016663

17

Google decided to build a new version and make it open source. The result was gRPC, which

is now used in many organizations to power use cases from microservices to the “last mile”

of computing (mobile, web, and Internet of Things).

In gRPC, a client application can directly call a method on a server application on a different

machine as if it were a local object, making it easier for you to create distributed applications

and services. As in many RPC systems, gRPC revolves around the idea of defining a service,

specifying the methods that can be called remotely with their parameters and return types.

On the server side, the server implements this interface and runs a gRPC server to handle

client calls. On the client side, the client has a stub (referred to as just a client in some

languages) that provides the same methods as the server.

gRPC clients and servers can run and talk to each other in a variety of environments and can

be written in one of the many languages supported by gRPC. So, for example, a gRPC server

can be developed in Java with clients in Python.

By default, gRPC uses Protocol Buffers, an open-source mechanism for serializing structured

data (although it can be used with other data formats such as JSON).

Synchronous RPC calls that block until a response arrives from the server are the closest

approximation to the abstraction of a procedure call that RPC aspires to. On the other hand,

networks are inherently asynchronous and in many scenarios, it is useful to be able to start

RPCs without blocking the current thread. The gRPC programming API in most languages

comes in both synchronous and asynchronous flavours.

Other protocols for configuration manipulation and state retrieval, like gNMI, are built on top

of gRPC. Within B5G-OPEN, gRPC could be used to interface the several components control

and data plane architecture such as for enabling topology synchronization in multi-controller

environment or implement communication between the SDN controllers and the telemetry

tools.

4.3.3 Kafka

Apache Kafka [KAFKA] is an open-source distributed event streaming platform used for high-

performance data pipelines, streaming analytics, data integration, and mission-critical

applications. Kafka is a distributed system consisting of servers and clients that communicate

via a high-performance TCP network protocol. Apache Kafka added benefit of data

persistence, i.e., it combines three key capabilities:

• To publish (write) and subscribe to (read) streams of events, including continuous

import/export of data from other systems.

• To store streams of events durably and reliably.

• To process streams of events as they occur or retrospectively.

This functionality is provided in a distributed, highly scalable, elastic, fault-tolerant, and

secure manner. Kafka can be deployed on bare-metal hardware, virtual machines, and

containers, and on-premises as well as in the cloud.

Kafka conforms to a publisher-subscriber architecture. Producers are those client

applications that publish (write) events to Kafka, and consumers are those that subscribe to

(read and process) these events. In Kafka, producers and consumers are fully decoupled and

agnostic of each other, which is a key design element to achieve the high scalability that Kafka

is known for.

 D4.1 GA Number 101016663

18

Events are organized and durably stored in topics. Topics in Kafka are always multi-producer

and multi-subscriber: a topic can have zero, one, or many producers that write events to it,

as well as zero, one, or many consumers that subscribe to these events. Events in a topic can

be read as often as needed, i.e., events are not deleted after consumption. Instead, you

define for how long Kafka should retain your events through a per-topic configuration setting,

after which old events will be discarded. Kafka's performance is effectively constant with

respect to data size, so storing data for a long time is perfectly fine.

Topics are partitioned, meaning a topic is spread over a number of "buckets" located on

different Kafka brokers. This distributed placement of your data is very important for

scalability because it allows client applications to both read and write the data from/to many

brokers at the same time. When a new event is published to a topic, it is appended to one of

the topic's partitions. Events with the same event key (e.g., a customer or vehicle ID) are

written to the same partition, and Kafka guarantees that any consumer of a given topic-

partition will always read that partition's events in exactly the same order as they were

written.

To make data fault-tolerant and highly available, every topic can be replicated, even across

geo-regions or datacentres, so that there are always multiple brokers that have a copy of the

data just in case things go wrong, owner wants to do maintenance on the brokers, and so on.

A common production setting is a replication factor of 3, i.e., there will always be three copies

of the data. This replication is performed at the level of topic-partitions.

4.3.4 Logstash and Elastic Search

Logstash [Logstash] is an open server-side data processing pipeline that ingests data from a

multitude of sources, transforms it, and then sends it to any repository. The Logstash event

processing pipeline has three stages: inputs → filters → outputs. Inputs generate events,

filters modify them, and outputs ship them elsewhere. Inputs and outputs support codecs

that enable to encode or decode the data as it enters or exits the pipeline without having to

use a separate filter.

Elasticsearch [Elasticsearch] is a search engine that provides a distributed, multitenant-

capable full-text search engine with an HTTP web interface and schema-free JSON

documents. It provides scalable search, has near real-time search, and supports

multitenancy. Elasticsearch tries to make all its features available through the JSON and Java

API. It supports faceting and percolating (a form of prospective search), which can be useful

for notifying if new documents match for registered queries. Another feature, "gateway",

handles the long-term persistence of the index; for example, an index can be recovered from

the gateway in the event of a server crash. Elasticsearch supports real-time GET requests,

which makes it suitable as a NoSQL datastore, but it lacks distributed transactions.

4.3.5 InfluxDB, Telegraf, and Grafana

InfluxDB [InfluxDB] is a high-performance time series engine designed to handle high write

and query loads. InfluxDB is meant to be used as a backing store for any use case involving

large amounts of timestamped data, including DevOps monitoring, application metrics, IoT

sensor data, and real-time analytics. Some of the features that InfluxDB currently supports

are:

• Custom high performance datastore written specifically for time series data.

• Written entirely in Go. It compiles into a single binary with no external dependencies.

 D4.1 GA Number 101016663

19

• Simple, high performing write and query HTTP APIs.

• Expressive SQL-like query language tailored to easily query aggregated data.

• Tags allow series to be indexed for fast and efficient queries.

• Retention policies efficiently auto-expire stale data.

• Continuous queries automatically compute aggregate data to make frequent queries

more efficient.

Telegraf [Telegraf] is an agent for collecting, processing, aggregating, and writing metrics. It

is based on a plugin system to enable developers to easily add support for additional metric

collection. There are four distinct types of plugins:

• Input Plugins collect metrics from the system, services, or 3rd party APIs

• Processor Plugins transform, decorate, and/or filter metrics

• Aggregator Plugins create aggregate metrics (e.g., mean, min, max, quantiles, etc.)

• Output Plugins write metrics to various destinations

Grafana [Grafana] is a multi-platform open-source analytics and interactive visualization web

application that provides charts, graphs, and alerts for the web when connected to supported

data sources. End users can create complex monitoring dashboards using interactive query

builders. As a visualization tool, Grafana is a popular component in monitoring stacks, often

used in combination with time series databases, monitoring platforms, and other data

sources.

Grafana comes with a plethora of features that provide value straight out of the box:

• Visualization: Grafana possesses a huge variety of visualization options to help you

view and understand your data easily. These options are split into “panels” which are

then used to build the Grafana dashboard. A panel is the most granular visualization

building block in Grafana, and is used to display data that has been queried from the

data source attributed to that panel. This information is being pulled from the data

source attributed to that panel and can be a type of graph (gauge, histogram, bar

chart, etc.), or logs and alerts.

• Alerting: When monitoring applications, it is essential to be made aware the second

something goes wrong, or is abnormal. This is vital to keeping your systems healthy

and reducing downtime. Grafana has built-in support for a huge number of

notification channels, e.g., email, REST endpoints etc.

• Annotations: Grafana allows leaving notes directly on graphs. This simple but

powerful feature provides a way to seamlessly mark important points on graphs. This

serves as a reminder for further action in the future, to provide context to an

onboarding team member, or to simply mark a special event on your graph.

4.4 ORCHESTRATION
The Network Function Virtualization (NFV) concept enables the full automation of many

processes that were previously manual, slow, and expensive. NFV is an indispensable

component in 5G services, available in mobile and fixed access networks. In this context, the

Network Function Virtualization Orchestrator (NFVO) is responsible for managing the

Network Service (NS) life-cycle, orchestrating Network Function Virtualization Infrastructure

(NFVI) resources, and optimizing the resource allocation and service connectivity. These

resources are managed to offer high availability, the agility to swiftly deploy new services,

 D4.1 GA Number 101016663

20

and unlock the full potential of virtualization of network functions: scaling, faster deployment

of services, simplified operations.

The NFVO system interacts with a number of other elements, Figure 4-1 shows a typical

application scope. The main frameworks for NFVO are reviewed below: Open Source MANO

(OSM), Open Network Automation Platform (ONAP), as well as other container-based

alternatives.

Figure 4-1 NFV Orchestration scope (source: [Mamu19])

4.4.1 OSM

Open-Source MANO (OSM) [OSM] is an open-source NFV manager and orchestrator of

software stacks for NFV architecture developed by ETSI. OSM enables an ecosystem between

operators and vendors to deliver and deploy services cost-effectively. The main architecture

modules of OSM are (see Figure 4-2):

• User interface (UI) allows the OSM’s service management as Launchpad module an

interactive graphical interface. The main functions are:

o Present NF and NS run-time statistics.

o Detailed view of computing and network topologies.

o Access credential management for VIM environments.

• Service Orchestrator (SO) manages the workflow via OSM. The main objectives are:

o Life-cycle management and primitive execution of the service.

o Project and user support.

o NS and VNF life-cycle operation (CRUD)

• Resource Orchestrator (RO) is responsible for resource management and

coordination from multiple VIMs or SDN controllers.

• VNF Configuration and Abstraction (VCA) sets the initial VNF design and enables the

actions, configurations, and notifications from iterations between VNFs.

• Network Service to VNF Communication (N2VC) is a key module managing the

communication between the SO and VCA modules.

 D4.1 GA Number 101016663

21

• Kafka bus enables a new channel for asynchronous communication between all the

components and eases the OSM integration with new modules (see Figure 4-3).

• Virtual Infrastructure Manager (VIM) is a fundamental element in MANO

architecture, but it is not present in the OSM stack. Instead, OSM is open to integrate

with main ones like OpenVIM, VMWare vCloud Director, Amazon Web Services, and

OpenStack.

• Monitoring (MON) integrates the monitoring tool according to the project

requirements and OSM architecture.

• Northbound Interface (NBI)

• Policy Manager (PoM) to add notifications where a new metric or alarm is relevant

to the MON module.

Figure 4-2 OSM Modules (source: [OSMRel4])

Figure 4-3 OSM life-cycle management for a new dedicated channel for asynchronous communications between

components (source: [OSMRel4])

 D4.1 GA Number 101016663

22

OSM has been successfully used in a number of European projects like MetroHaul [MHEC],

5G-CrossHaul [5GCH] to name a few, and has a fair support by the community. As drawbacks,

OSM complexity and steep learning curve makes it less attractive. Additionally, its support of

lightweight containers, a major driver in 5G/6G infrastructures, is not as complete as other

alternatives.

4.4.2 ONAP

Open Network Automation Platform (ONAP) [ONAP] is an open-source software platform

developed under the Linux Foundation that enables the design, creation, and orchestration

of services on the infrastructure layer sitting on top of individual VNF or SDN, or a

combination of both. The main goal is to address efficient provisioning and end-to-end

infrastructure management serving up on-demand services and optimizing the automation

of the associated processes using big data and Artificial Intelligence (AI) [Mam19]. ONAP

environment consists of two major architectural frameworks: design-time environment and

execution-time environment (see Figure 4-4) [Sli17].

• The design-time environment is a development environment with functions and

libraries needed for the development of new capabilities. It entails a visual tool for

the design and modelling of assets used in ONAP components with a subsystem to

make policies and conditional rules. The design-time environment has the following

subcomponents:

o Service Design and Creation (SDC) is an environment that describes based on

multiple levels of assets how VNFs or services are managed, including

resources and services requirements.

o Policy Creation is an ONAP subsystem that contains a set of control rules,

orchestration and management policies. The VNF placement rule specifies

where VNFs should be placed according to the constraints.

• The execution-time environment is an environment to execute the policies and rules

prepared in the design-time environment. The policies and rules are responsible for

data collection, analytics, and resource inventory. This environment includes service

orchestration for end-to-end service automation, performance monitoring, and

security based on Enhanced Control, Orchestration, Management & Policy (EOCMP).

The main modules are:

o Active and Available Inventory (AAI): This is continually updated to provide a

real-time view of the topology underlying the available resources.

o Controllers: One controller manages the state of a single resource. ONAP

uses multiple controllers to execute resource configuration and instantiation

to configure the network and manage VNFs. On the other hand, the

Application Controller manages more complicated VNFs and services. Finally,

the Infrastructure controller orchestrates and manages the resources within

the local or cloud infrastructure.

o Master Service Orchestrator (MSO): It handles capabilities of end-to-end

service provisioning from the top level.

o Data Collection, Analysis, and Events (DCAE): The main role is the telemetry

data collection from VNFs to detect network anomalies and determine the

corrective actions.

 D4.1 GA Number 101016663

23

Figure 4-4 ONAP system (source: [Slim17])

Similarly to OSM, and even more, ONAP software has become a very complex software suite,

difficult to manage and deploy. It has a growing community, and an increasingly better

documentation quality. Still, the learning curve is also steep, which is hindering its adoption.

4.4.3 Alternatives based on containers

In recent years, a growing interest exists in the industry for the exploration of simpler NFVO

strategies, based on smaller and well-known frameworks with well-defined APIs and

interactions, instead of large monolithic software suites like ONAP or OSM. In this line, the

Container Orchestration Engines (COE) [ETSI19] are specialized tools, which are capturing the

industry attention as a simpler form to address the NFV and on-demand application

deployment and scaling needs.

COEs automate the containers' deployment, management, scaling, and networking over a

cluster of computers by an API for life-cycle management, schedule the containers based on

available resources and needs. Its key role: automating in a simple form the painful

management of the container life-cycle when its number increases dynamically with

demand.

The most popular and widely adopted option is Kubernetes [Red22]. Below key aspects of

Kubernetes will be reviewed, as well as Open Baton, an (also open-source) alternative,

connected to the ETSI NFV MANO umbrella.

4.4.3.1 Open Baton

Open Baton [OpenBaton] is an open-source platform that presents a comprehensive

development of the ETSI NFV MANO specification for virtual network infrastructures (see

Figure 4-5). This tool ports, adapts, manages, and orchestrates the network functions in a

 D4.1 GA Number 101016663

24

specific network environment to improve the performance and grant security of the overall

infrastructure. This solution can provide on-demand complete virtualized infrastructures

such as IaaS or PaaS enabling the elastic deployment of cost-efficient network

infrastructures. The main components are:

• A generic VNFM and generic EMS to manage the VNF life-cycle based on their

descriptors.

• Many VNFM drivers to select.

• Multi-VIM without having to re-write the orchestration logic.

• Event mechanism based on pub/sub mechanism for dispatching the execution of the

life-cycle events.

• Autoscaling engine for automatic runtime management of scaling operations of the

VNF.

• Fault management system at any level.

• Monitoring system based on Zabbix

• Network slicing to ensure a specific QoS for the NS.

• Set of libraries (Java, Go, and Python) for building your VNFM

Figure 4-5 Open Baton Components (source: [OpenBaton])

Open Baton has been chosen in a number of research projects as NUBOMEDIA [Nubomedia]

Mobile Cloud Networking [MCN] and SoftFIRE [SoftFIRE], exploring its application in different

5G/6G contexts. The official Open Baton online documentation [OpenBaton] includes the

User Tool section with information related to Dashboard, CLI, SDKs and REST APIs. Nowadays,

Open Baton is an attractive platform but is not widely adopted by the industrial or

researching community in contrast to Kubernetes.

4.4.3.2 Kubernetes

Kubernetes (K8s) [K8s] is an open-source platform for container orchestration developed by

Google in 2014 with virtualization orchestration in mind. The main functions are automated

arrangement, coordination, and cluster management of containerized applications.

Kubernetes becomes extremely useful and powerful as a solution for most challenging

 D4.1 GA Number 101016663

25

functionalities (service discovery, load balancing, health checks, auto-scaling containers,

nodes, etc.).

Kubernetes is portable, configurable, modular, and offer features like container auto-

placement, auto-restart, auto replication, and auto-healing. The main element of Kubernetes

are [Chifor17]:

• Master node assures everything is running with multiple controllers in charge of the

cluster health, replication, scheduling, endpoints (Services and Pods), Kubernetes

API, etc. This node is present in a separate virtual machine in the same physical host.

• Worker node runs the Kubernetes agent and is responsible for running Pod

containers, mounts Pod volumes, does health checks, and reports the Pods and the

node status to the rest of the system.

• Pod is the smallest and simplest unit in the Kubernetes model, represents a running

process in the clusters, and contains one or more containers.

• Deployment provides declarative updates for Pods and ReplicaSets.

• DaemonSet ensures that the nodes run a copy of a Pod (nodes added/removed to

the clusters, Pods added/garbaged to them).

• ReplicaSet is a controller that ensures a specified number of Pods replicas running at

any given time.

• Service is an abstraction that defines a logical set of Pods and a policy to access them.

It exposes the Pods to other services within the cluster or externally.

For B5G-OPEN, the benefits of Kubernetes are:

• Its specialized focus on the use of lightweight containers, the ideal mechanism to

host the microservice-based applications, a clear industry trend, where each

application can be composed of tens of containers.

• In contrast to all other platforms, the Kubernetes concept is simple with

sophisticated code and documentation. It exports a REST-based API, to efficiently

handle the resource lifecycle.

• Kubernetes is also an enabler for the so-called serverless approach [Moh19]. The

idea under such strategy includes a diverse set of techniques, which pursue

simplifying even further the development and lifecycle management of micro-

service-based applications. For instance, Amazon AWS offer as a serverless function,

the so-called lambda-service. This permits the user the definition of Zero-touch

functions (lambdas) that are e.g., independent AWS containers without management

tasks. In this form, more and more of the management burden would be actually

handled by the cloud provider. In conclusion, Kubernetes would open the door to

exploring the advantages of serverless approaches in the network operation

architecture.

4.5 QOT ESTIMATION TOOLS

As a fundamental initial hypothesis of B5G-OPEN, optical transmission exploiting multiple

optical bands is the most promising solution in the context of wavelength routed networks

that increases network capacity without compromising network node connectivity and

without exhausting the operator’s deployed fibre reserves. A disaggregated, vendor-

 D4.1 GA Number 101016663

26

agnostic, optical multi-band transport ecosystem is necessary to ensure the cost-effective

deployment of these systems, which are facing considerable challenges in physical network

design and network planning: in an OMB system, physical layer phenomena impose

additional and complex performance limitations. Additionally, highly desirable features are

network automation and interoperability by means of open interfaces and an SDN-enabled

control/management framework. Such interfaces and frameworks are not currently

designed with multi-band support, which poses additional challenges. It is necessary to

develop modular SDN architecture where a physical layer impairment aware (PLA) routing

engine and QoT estimation tools can be used for use cases such as path validation and path

computation, ideally relying on open interfaces and standard data models extended for such

purpose.

4.5.1 GNPy

GNPy is an open-source, community-developed library for building route planning and

optimization tools in real-world mesh optical networks [GNPY]. The project is driven by a

consortium of operators, vendors, and academic researchers sponsored via the Telecom Infra

Project's OOPT/PSE working group, building as tool for rapid development of production-

grade route planning tools which is easily extensible to include custom network elements

and performant to the scale of real-world mesh optical networks.

GNPy can act as a Path Computation Engine, tracking bandwidth requests, or advising the

SDN controller about a best possible path through a large DWDM network. For example, it

takes into account detailed models of data plane devices and optical fibres to provide an

accurate estimation of the quality of transmission reachable along a specified path.

4.5.2 OLC-E Tool

The OLC-E tool is used either as a stand-alone planning tool or as the main element of a Path

Computational Engine (PCE). The OLC-E tool, as detailed in [UZU21], it is based on a multi-

band routing engine which ensures that: i) routing is implemented by means of an efficient

spectrum and modulation-format assignment; and ii) the impact of physical layer effects over

the selected optical paths is estimated and the results are benchmarked against QoT target

values (BER, OSNIR, OSNR, etc). In this way, the planning tool ascertains the conditions that

maximize the total capacity of the network while it minimizes the global blocking probability.

This task is completed in the three stages as follows:

STAGE - I: Network Topology Implementation: the network topology is defined by setting the

connectivity pattern between the nodes and the traffic matrix. Next, the k-shortest paths for

all network node pairs are derived. More specifically, in this step, the following quantities are

defined: the network topology including nodes, edges and amplifiers, the available optical

bands, the capacity per band, the traffic matrix, the average time duration of the demands

and the average inter-arrival time between two consecutive demands, as well as the available

line-rates and their distribution on the demands.

STAGE – II: Spectral and Modulation Assignment (SMA) and PL entanglement: the operation

is completed in two steps: In the first step, i) a preliminary spectrum and modulation format

assignment (SMA) is made for a number of the k-shortest paths, and ii) the Optical Signal to

Noise plus Interference Ratio (OSNIR) for these shorter paths is estimated taking into account

the impact of the physical layer effects by means of closed-form expressions.

 D4.1 GA Number 101016663

27

In the second step, the Optical Multi-band Physical Layer Aware Routing Modulation and

Spectral Assignment (OMB-PLA-RMSA) algorithm either selects or rejects a lightpath. A path

is rejected if a) no continuous spectral slots are available in any optical band to support the

end-to-end connection, b) either the OSNIR of the candidate lightpath falls short of the QoT

estimator threshold or the OSNIR of at least one of the already established lightpaths would

perform below the QoT threshold due to the presence of this candidate lightpath. In either

(a), (b) cases, the rejected lightpath is assigned the next available path from the sorted list of

k-shortest paths and it is then re-iterated. If these paths are all rejected, the first step is

repeated using a lower cardinality SMA values. If no path is retained, the engine registers a

blocking condition.

 STAGE – III: Path Allocation: This is the stage where the lightpaths are established in the

network. The final assessment on network’s throughput is completed and a lightpath is

successfully set if contiguous spectral slots are available over the end-to-end transparent

path with acceptable physical layer performance (above the QoT estimator threshold). The

successful establishment of a lightpath triggers the update of the corresponding arrays for

each link of the path, e. g., arrays of power, modulation format, consumed frequency slots.

With the aid of the notations and the parameters listed in Table 4.1, the implementation of

the multi-band routing engine is as below:

Table 4.1: Variables and parameters used in the multi-band routing engine.

Variable Description Variable Description

G network topology graph ds source of demand d

N set of network nodes dn destination of demand d
E set of bidirectional optical fibre links

(edges)

dt duration of demand d

A Set of amplifiers in the network dlr Requested line-rate for demand d

B set of active optical bands k number of shortest paths used in

Yen's algorithm

CB set of available frequency slot units -

FSUs for each optical band in the set

B

K set of k-shortest paths calculated

using Yen's algorithm

T Input traffic matrix pc candidate path assigned to

demand d

D set of demands in increasing time of

arrival order

rc candidate transmitter type

assigned to demand d

Dt average time duration of the

demands

fc candidate set of FSUs assigned to

demand d

Di average inter-arrival time between
two consecutive demands

pa final path assigned to demand d

LR set of available line-rates ra final transmitter type assigned to

demand d

RB set of available transmitter types for

each optical band in B, in increasing

required FSU order

fa final set of FSUs assigned to

demand d

r transmitter type (macroscopic

parameters)

wa final transmitter power for

demand d

rd Maximum reach of a transmitter type

r

St total simulation time

rf number of consecutive FSUs

consumed per transmitter type r

t current simulation time

d One particular traffic demand

(source-destination)

drt boolean, TRUE if demand d is

routed, FALSE otherwise

INPUT: Network topology including nodes, edges and amplifiers G(N, E, A). Define the optical bands B engaged. Definition
of the capacity CB per band. Definition of traffic matrix T. Average time duration Dt of the demands and average inter-arrival
time Di between two consecutive demands. Definition of the available line-rates LR and their distribution on the demands.
Stage 1: Network Topology Implementation:
1: for all 𝑛𝑖 ∈ 𝑁 do
2: for all 𝑛𝑗 ∈ 𝑁 do

3: Compute k shortest-paths using the Yen's algorithm and store the results to K(ni,nj)

 D4.1 GA Number 101016663

28

4: end for
5: end for
6: t=0
7: while t< St
8: Generate a new demand d; Add d to D;
9: end while
Stage 2A: Spectral and Modulation Assignment (SMA) and PL entanglement:
10: while D is not empty do
11: Consider the first demand 𝑑 ∈ 𝐷;
12: Bd=B; Kd=k-shortest paths from ds to dn in K(ni,nj); drt=false;
13: while Bd is not empty AND drt=false do
14: Consider the first band 𝑏 ∈ 𝐵𝑑;
15: while Kd is not empty AND drt=false do
16: Consider the first path 𝑝𝑐 ∈ 𝐾𝑑;
17: Calculate the set of r ∈ 𝑅𝐵 denoted as Rd assuming band b and line-rate dlr;
18: for all 𝑟 ∈ 𝑅𝑑 do
19: if (rd < pc distance)
20: Remove r from Rd;
21: end if
22: end for
23: while Rd is not empty AND drt=false do
24: Consider the first rc ∈ 𝑅𝑑 assuming band b and line-rate dlt;
25 : while FSUi < Cb AND drt=false do
26: Calculate the next available set of FSUs FSUn in the path pc starting from FSUi using the First Fit (FF) route algorithm
27: if (route found in FF)

Stage 2B: Physical Layer Performance:

28: Execute Physical Layer Check (PLC) using Path OSNIR

29: if PLC == true
30: Assign the demand using Path Allocation (d,b,pc,dbw);

31: end if

32: end if

33: end while; Remove rc from Rd;

34: end while; Remove pc from Kd;

35: end while; Remove b from Bd;
36: end while

37: if (drt=false)

38: Block demand d;
39: end if

40: end while

Stage 3: Path Allocation:

41: Allocate path pa= pc in the network;

42: Allocate set of frequency slot units fa=fc in the optical band b across the path pa in the network;

43: Allocate transmitter ra=rc across the path pa in the network;
44: Set wa as the power of transmitter ra;

OUTPUT: Utilisation of frequency slot units, finalisation of modulation format for a given line-rate, the consumed optical

band and the power channel for all demands in the set D.

The OLC-E tool (v1.0) has the following features:

• The physical layer performance is estimated via closed-form expressions something

that allows to get the results in real-time. In particular, the OLC-E tool admits,

assesses, and routes thousands of call set-up requests within the timeframe of few

minutes. Moreover, the OLC-E tool (v1.0) has integrated an advanced power

optimization methodology that allows to tailor the physical layer performance of

each optical band according to the high-level objectives set by the network operator

as, for example, whether the operators wish all optical bands to have the same

optical reach or whether the optical reach of a band (or bands) is higher at the

expense of the optical reach of other bands.. Examples of such optimizations are

detailed in D3.1.

• It supports both transparent and translucent modes of operation. In the latter mode,

a path that is rejected during STAGE-II, it is re-iterated via the “Path-Split Routine”

which allows to split a rejected transparent optical path in two shorter-length

transparent paths with full o/e regeneration at an intermediate node. After this

 D4.1 GA Number 101016663

29

implementation, the two shorter length paths may exploit a higher cardinality SMA

and/or a lower symbol-rate source, which are, possibly, independently selected in

the two paths. This way, the total number of optical slots consumed in the two

independent paths are reduced alleviating blocking due to spectral unavailability.

Similarly, higher line-rates might be employed in the two shorter-length paths that

reach the QoT threshold that otherwise might be unattainable.

The flowchart illustrated in Figure 4-6 summarizes the logical implementation of the OLC-E

tool.

 D4.1 GA Number 101016663

30

Figure 4-6 The flow chart of the OLC-E’s multi-band routing engine.

 D4.1 GA Number 101016663

31

5 OVERVIEW OF B5G-OPEN CONTROL, ORCHESTRATION, AND

TELEMETRY

The B5G-OPEN control, orchestration, and telemetry system (often referred to as the control

plane, for short) is the software systems that provides the ability to provision, dynamically

and upon demand, B5G and 6G services, as presented in the previous sections.

The following sections macroscopically present the functional architecture of the B5G-OPEN

control plane, initially targeting single domain networks, which was initially proposed in

Milestone M4.1 and will be refined along the project execution. This section presents,

macroscopically, the most relevant elements of the architecture. The different functional

elements (often referred to as components) are identified for the purposes of service

orchestration and device configuration (incl. resource control).

5.1 MAIN INNOVATIONS AT THE B5G-OPEN CONTROL PLANE
The main innovations for the control plane of B5G-OPEN are:

- [multiband control] Control of optical multi-band network, this means being able to

exploit the multiband capabilities of optical devices such as transmission (Tx)

elements – transceivers) or switching (multi-band ROADMs).

This is detailed in Section 6, showing the B5G-OPEN approach.

- [transparent multi-domain, domain-less] The ability to setup connections in a

transparent manner, across multiple domains and network segments. This is

exemplified in the “multi-OLS” scenario, in which different optical line systems are

interconnected without a O/E/O conversion. There is a systematic need to extend

SDN principles to networks composed of multiple domains and technological layers,

significantly more complex than single domain networks due to the lack of detailed

and global topology visibility. The division into domains is driven by factors such as

scalability limitations, confidentiality requirements, or interoperability issues, and

the conception of scalable, efficient reliable, and trustable systems for the

provisioning of end-to-end services.

This is covered in Section 6, as well as considerations regarding Access Segment

integration elaborated in Section 7 as well as considerations regarding integration

with IT (computing, storage) and orchestration in Section 8.

- [Packet/optical integration] the evolution from discrete optics towards pluggable

interfaces is also challenging the design of the control plane which, to a large extent,

has considered the control plane of the IP/MPLS layer largely decoupled from the

control plane of the optical layer. Current architectures for the SDN control plane of

the transport network consider the scope of the control limited to transceiver to

transceiver and the tunability of the transceiver was directly under the control of the

optical SDN controller and multi-layer networking was commonly accomplished

typically with a hierarchical arrangement of controllers (a packet controller and an

optical controller under the orchestration of a parent controller). This is addressed

in B5G-OPEN, considering multiple options including exclusive or concurrent control.

 D4.1 GA Number 101016663

32

This, along with control of multiband networks, is a critical innovation of B5G-OPEN.

A dedicated section is provided (Section 9)

- [physical layer impairments, PLI] accounting for PLI is critical to efficiently plan and

operate optical networks and high data rates, with increasing non-linear effects.

When considering the extension to wide-band, such parameters can be specific to

certain frequency bands and one can no longer assume uniform channel behaviour.

Until recently, there has been a lack of common, standard, and open data models for

physical impairments, a domain where it has been difficult to reach a wide

consensus. Current systems need to interop with heterogeneous monitoring info

sources and proprietary and costly simulation tools are difficult to interop or

integrate. The new opportunities associated to the development of planning,

validation, and path computation tools such as the Open-Source GNPy or Net2Plan

has once again shown the importance and role of standard and open interfaces. The

challenge is then two-fold: how to integrate such third-party, externalized tools and

from a modelling perspective, how to extend current network and service models to

account for PLI. This includes a finer characterization of transceivers operational

modes, which characterize a given transceiver’s different transmission modes

including aspects such as bit/baud rate, FEC or modulation formats, as is being done

in OpenConfig manifests, IETF operational mode characterization or TAPI transceiver

profiles. Additionally, further work is required to model optical fibers – including the

selection of a relevant sent of parameters --, amplifier functions e.g., in terms of

parameters such as wavelength dependent gain, operation mode, noise figure as

well as network elements such as ROADMs. Finding the right abstraction level, where

a given model can be applied to a multiplicity of devices from different providers is

challenging.

- [telemetry] The scope of the SDN no longer covers exclusively device / system

control and configuration aspects but extends to optical monitoring and telemetry,

a key enabled for advanced functions such as autonomous/autonomic networking

via hierarchical and coordinated closed loops. Streaming Telemetry protocols and

architectures such as gRPC/gNMI are increasingly being used to export telemetry

data from devices, providing flexibility in the definition of streams, filtering, and use

cases. Telemetry architecture is detailed in Section 10.

- [external planning tools] Planning tools, including QoT estimators or path

computation and validation systems need efficient access (in terms of retrieval,

storage and processing) to collected and managed data. Algorithm inputs need to be

modelled in an efficient and scalable way, defining dynamic workflows with

controlled and minimized impact on service provisioning latency. Algorithmically,

functional elements dedicated to generalized Routing and Spectrum Assignment

(RSA) or function placement are needed and are expected to operate in hybrid off-

line/on-line modes, e.g., dynamically, used to compute/validate e.g., OTSi services

over specific bands with satisfactory QoS/QoT. In this sense, further work is needed

to have a unified short-term provisioning and long-term network-planning using a

single software framework. Such systems need to scale in complexity. The fact that

data is heterogenous and covers multiple application domains renders the

 D4.1 GA Number 101016663

33

development of placement algorithms of orchestrator schedulers that need to

retrieve network information from multiple layers and domains extremely complex.

- [network automation] Aspects related to automation, zero touch networking and

Intent Based Networking (IBN) are developed in the areas of service deployment,

network planning and overall network operation. Outcomes related to automation

in single domains and later cross-domain automation (across technology layers or

network segments).

Such aspects are elaborated on in Section 11.

5.2 INITIAL ASSUMPTIONS ON OPTICAL DEVICE CONFIGURATION AND CONTROL
The definition of the architecture relies on a set of initial assumptions, namely that the

devices are client agnostic (they export several configuration endpoints, based on separation

of concerns, functionality, or administrative assignment), export several telemetry

endpoints, with same considerations since configuration and Telemetry endpoints may have

different access requirements, visibility, and interfaces should be homogeneous. For devices

that export multiple configuration endpoints, it is expected that the scope of each endpoint

is clearly defined, and/or side effects are well-known (i.e., no overlapping models).

The architecture (reflected in Figure 5-1) is defined targeting two main models: i) partial

disaggregation with a 2-level control hierarchy, where there is a dedicated OLS controller,

responsible for the ROADM and ILA nodes (note that ROADM/ILA nodes MAY export other

interfaces (e.g., streaming telemetry) towards other entities, and ii) Full Disaggregation, with

a single SDN controller. Both models may include additional functional elements, notably in

support of path computation, resource allocation, or function placement.

As addressed in the previous section, the control plane architecture assumes several key

services, such as the provisioning of DSR or Media Channel connectivity services and

contemplates two main blocks: Multi-band Optical Network SDN control and Domain

Telemetry Collector. The MB Optical Network Control is fully decomposed on TAPI adapter,

Path Computation Servers and Optical Controllers (e.g., in the case of partial disaggregation

additional OLS controllers will be considered). For the packet domain, different options are

addressed. Packet controllers can cover one or multiple packet domains and rely on pure

SDN (e.g., P4) or hybrid SDN/IP in which the SDN control plane is mostly used to configure IP

processes running in the packet/optical boxes. In the case of multi-OLS scenarios, B5G-OPEN

will consider B2B deployments with Transparent Configuration.

 D4.1 GA Number 101016663

34

Figure 5-1 B5G-OPEN Control, Orchestration and Telemetry architecture.

5.3 SERVICE ORCHESTRATION AND PLANNING
Aspects related to Service orchestration for provisioning, planning, or network analysis are

responsibility of the Service Orchestrator (referred to as the B5G-ONP). Such element sits on

top of the Kubernetes controller, the SDN controllers and the Domain Telemetry collector.

5.4 OPTICAL PACKET INTEGRATION
This section overviews the control plane assumptions related to Optical and Packet

integration, on top of which the different control plane architectural solutions (e.g.,

exclusive, concurrent) can be defined. B5G-OPEN will focus on the concurrent solution, in

which different controllers can have access to the packet / optical nodes. This is driven by

criteria related to implementation simplicity, but it does not mean that the other solutions

are not appropriate.

In either case, the data plane assumes pluggable interfaces in the packet / optical nodes,

there is no discrete optical element.

5.4.1 Campus Mode

In the Campus mode (Figure 5-), packet forwarding is based on P4 runtime. Consequently,

the SDN controller for the packet layer is responsible for configuring flow forwarding as

defined by the P4 standard documents.

3

2

NETCONF
AGENT

P4 Switch

K8s Node

ROADM
R1

ROADM
R2

AMP1 AMP2

Multi-Band Optical
Network SDN

Control

Packet / Optical
Node

PointToPoint Connectivity
TAPI DSR Connectivity Request

Optical Connectivity
TAPI Photonic Media Layer (Media Channel).

Domain Telemetry
Collector

B5G-ONP app
Provisioning / Network analysis / Capacity planning

B5G-OPEN Orchestrator

Packet
Controller
(ONOS)

ONOS
Native NBI

k8s
Master

k8s API TAPI DSR

 D4.1 GA Number 101016663

35

Figure 5-2 Packet/Optical integration (campus / p4 modes)

5.4.2 Telco Mode

In the telco mode, it is assumed that packet/optical nodes are actually IP routers and that

there are one or more routing processes (e.g., BGP / OSPF) running on the node. SDN

applicability in this mode mainly refers to the fact that actual configuration of the routers is

driven by the SDN controller (see Figure 5-).

Figure 5-3 Packet/Optical integration (telco / router modes)

5.5 TELEMETRY AND INTENT BASED NETWORKING
The domain telemetry collector architecture has also been defined (see Figure 5-). It involves

a Telemetry Manager with its own repository as well as telemetry agents that sit on different

elements, using the REDIS database. Intent Based Networking Applications implement

Knowledge Sharing and rely on the services offered by the different functional elements.

3

2

NETCONF
AGENT

1P4

K8s Node

ROADM
R1

ROADM
R2

AMP1 AMP2

Multi-Band Optical
Network SDN
Control

Packet / Optical
Node

PointToPoint Connectivity
TAPI DSR Connectivity Request

Optical Connectivity
TAPI Photonic Media Layer (Network Media Channel).

Domain Telemetry
Collector

Packet
Controller
(ONOS)

P4 RT

ONOS Native NBI

OpenConfig

3

2

NETCONF
AGENT

1

K8s Node

ROADM
R1

ROADM
R2

AMP1 AMP2

Multi-Band Optical
Network SDN
Control

Packet / Optical
Node

PointToPoint Connectivity
TAPI DSR Connectivity Request

Optical Connectivity
TAPI Photonic Media Layer (Network Media Channel).

Domain Telemetry
Collector

Packet
Controller
(ONOS)

ONOS Native NBI

OSPFBGP

IP Router
Parameter
Config

X

 D4.1 GA Number 101016663

36

Figure 5-4 B5G-OPEN Control and Orchestration architecture

Finally, the B5G-OPEN architecture operates service and network operations from the Access

Point to the Cloud node, which might include monitoring and AI/ML. Based on Intent-based

(IBN) and zero-touch networking paradigms, autonomous operation is built using closed-

control loops at various levels, from device to network. Empowered by a distributed AI/ML-

based engine providing data collection and intelligent aggregation, analysis, and acting on

the network devices, autonomous operation enables coordinated decision-making across

domains. This is shown in Figure 5-5.

Figure 5-5 B5G-OPEN Intent Based Applications (IBN) and Knowledge-Sharing.

 D4.1 GA Number 101016663

37

6 SDN CONTROL OF OPTICAL MULTIBAND NETWORKS

6.1 INTRODUCTION
The “optical control” part of B5G-OPEN refers to the control of the transceivers devices and

the optical line system. B5G-OPEN considers two different approaches within a disaggregated

system: a fully disaggregated (with visibility of the underlying devices) and partially

disaggregated. In this case, the SDN control plane for partially disaggregated networks

follows a hierarchical arrangement of controllers, in which a first level control-plane

disaggregates the transceivers from the OLS. A second level, the OLS controller is responsible

for provisioning (Network) Media Channels (MCs/NMCs) between client ports and for

configuring ROADM devices and any other applicable device in the optical path.

Figure 6-1 Control Plane of Partially Disaggregated Optical Networks with OLS controller

In specific scenarios, SDN agents are deployed at each node, which, in turn, acts as local node

controllers to configure the different devices (devices are in most cases exposing an SDN

device API). When considering “open interfaces” the interfaces towards the individual

devices under the control of an OLS controller are commonly not exported and the visibility

for higher (e.g., client) applications is limited. In a partially disaggregated system, there are

not necessarily SDN agents in the ROADM nodes, as they are configured by the OLS controller

using proprietary (non-SDN) interfaces. There may additionally be device SDN API on the

ROADM devices for per-device configuration and PM monitoring / streaming telemetry.

6.2 TAPI-ENABLED OPTICAL NETWORK ORCHESTRATOR (TAPI NORCH)
The TAPI-enabled Optical Network Orchestrator is a functional element of the architecture

that is responsible for the following functions:

- Providing a uniform, open and standard view and interface to the higher levels and

components of the B5G-OPEN control, orchestration, and telemetry system.

- Compose a complete Context to be consumed by B5G-OPEN network planner and

additional consumers combining information retrieved from subsystems and sub-

controllers (Optical Controller, external databases, monitoring systems, etc).

- Enable single entry point for provisioning DSR and Photonic Media services, including

externalized path computation.

Open Optical Line System
domain A

Domain (O-OLS)
controller

Open, Vendor-independent provisioning and control
(e.g. Transport / Optical SDN controller)

Domain (O-OLS)
controller

Open Terminal

Open
Device APIs

Open
Device APIs

Open Network
APIs

Open Network
APIs

Open Optical Line System
domain B

 D4.1 GA Number 101016663

38

- Provide an event telemetry data source that reports events that happen

asynchronously in the network.

6.2.1 Interfaces

By design, the TAPI Optical Network Orchestrator is an SDN Controller that exports a standard

NBI, (based on the standard ONF TAPI interfaces) while orchestrating and coordinating

multiple delegated systems, such as the Optical SDN controller, as well as multiple sources

of physical impairment information.

- The interface from the TAPI Optical Network Orchestrator to the optical controller

will be based on the ONOS native interface, extending the existing implementation

to support additional requirements and use cases

It is also responsible for performing path computation to the Optical Path Computation

Element (OPCE), running in a dedicated Path Computation Server or as part of a planning

software, while also using an open and standard interface for such purpose.

- The interface from the TAPI Optical Network Orchestrator to path Computation

engine will be based on a specific instance of path computation interface defined in

TAPI.

- Additional interfaces will be defined to support the augmentation of topological

elements with physical layer information data.

From an architectural perspective, the TAPI Optical Network Orchestrator (see Figure 6-2)

abstracts the optical controller and path computation entities from the upper layers (notably,

B5G-OPEN planner and orchestrator).

Figure 6-2 Transport API (T-API) Optical Network Orchestrator with the BG5-Open control plane functional

architecture, showing the usage of an externalized path computation function

3

2

NETCONF
AGENT ROADM

R1
ROADM

R2

AMP1 AMP2

OLS
Controller

Optical
Controller

TAPI for OCh/Media Channel
Based on ONOS OLS driver

Optical NBI

TAPI
Network Orch

TAPI for DSR or Media Channel
Tracking standards definition and TAPI v2

Packet / Optical
Node

Path
Computation
Server

PointToPoint Connectivity
TAPI DSR Connectivity Request

Optical Connectivity
TAPI Photonic Media Layer (Network Media Channel).

TAPI Path
Computation

Native
Topology

OLS
Topology

TAPI Topology

 D4.1 GA Number 101016663

39

The core of the TAPI Optical Network Orchestrator controller is an asynchronous event loop

(see Figure 6-3). On the one hand, it exports multiple services via its multiple North Bound

Interfaces (NBI) to users or clients, using RESTCONF/YANG. The most relevant services are

Topology Management, Connectivity Service Management and Path Computation.

The RESTCONF server is responsible for processing requests using the RESTCONF protocol.

The planned Yang models are a subset of the ONF TAPI v2.1 Requests are mapped to internal

structures and processed by functions in the event manager. The OLS controller is a multi-

threaded application, written in C++ (C++20). It targets GNU/Linux systems (e.g., Ubuntu

20.04 and later) and can be executed as docker containers. The design is highly modular, so

additional functionality can be implemented as shared link libraries that can be configures

and loaded on demand.

Figure 6-3 Internal diagram of the Transport API (T-API) Optical Network Orchestrator with externalized path

computation

6.2.2 Exported North Bound Interface

As stated, the TAPI Optical Network Orchestrator will adopt the uniform TAPI interface. B5G-

OPEN contributes actively, in cooperation with WP6, to the standardization of this interface

and data models. It defines a set of core information models and layering to represent optical

networks and services, as shown in the Figure 6-4.

TAPI
Connectivity

RestConf server

TAPI
Topology

TAPI
Path Comp

Event
Serializer

Kafka/Redis Client

SBI Protocols

ONOS
Native

Topology
Client

External
Services

RESTCONF
TAPI

Client

Topology
Service

Path Comp
Service

Event
Manager

Connectivity
Services DB

(LSPDB)

Network
Topologies DB

(TED)

Provisioner

Path
Provisioning

Service
Path

Computation
Service

Algorithm
DB

Discovery Device
Manager

Management
&

Configuration

Get/Set

Get

Get

Query Query

Query

 D4.1 GA Number 101016663

40

Figure 6-4 Transport API (T-API) Optical Network Orchestrator: logical view of a TAPI topology for an optical

domain, based on the TAPI Core Information model

6.3 OPTICAL CONTROLLER
The optical controller is based on ONOS SDN controller that provides a wide environment

(including the support of all the most relevant control protocols toward the data plane) that

besides the control of optical devices and OLS will also be utilized for the control of packet

devices. In particular, the main roles of the optical controller are: (i) retrieve devices

description from data plane device and abstract it toward the upper layers of the control

pane; (ii) receive the service configuration requests by the upper layers of the control pane

(e.g., the activation of a point-to-point connectivity service) and translate this request is a set

of configuration messages to be forwarded to each involved device.

The main interfaces that will used in ONOS to interact with the other B5G-OPEN control plane

elements are: (i) the ONOS native REST-based northbound APIs will be used to interact with

the TAPI Optical Network Orchestrator and with the Path computation server, such interfaces

can be used for both receiving configuration instruction to be applied on the data plane and

exporting topological and physical impairments information; (ii) NETCONF/YANG based

interface will be used toward data plane optical devices allowing the configuration and

management of such devices whose description could be based on standard (e.g.,

OpenConfig, OpenROADM) or proprietary YANG models; (iii) a RESTCONF based interface

toward the OLS controller. Moreover, ONOS also provides additional interfaces to visualize

and configure the underlying network such as a web-based GUI and a CLI.

OTS_MEDIA

OTS_MEDIA

OMS

OMS

MC

MC

OTSiMC

OTSiMC
(+OTSi PAC) MC Top Connection (a/d to a/d port)

OTSiMC Top Connection (line to line port)

OMS
Top Connection with Pools

OTS_MEDIA
Top Connection

(deg to amp port)

OTS_MEDIA
Top Connection

(amp to deg port)

OTS_MEDIA
Top Connection
(a/d to line port)

OTS_MEDIA
Top Connection
(line to a/d port)

 D4.1 GA Number 101016663

41

Fig 6.5: Web-based GUI of ONOS where both a number of packet-based and optical devices

(fully disaggregated scenario) are controlled.

The current version of ONOS is already able to connect to a variety of packet-based and

optical devices. However, interfaces toward the optical devices should be extended through

the development of specific drivers, moreover existing drivers should be accurately tested

and probably updated against the most recent version of standard models (e.g., last tested

version of TAPI drivers toward the OLS controller was based on TAPI 2.1). Other development

work will be required in ONOS for: (i) introducing the support of multi-band, (ii) exportation

of physical impairment device manifest; (iii) introduce the possibility to activate intents using

as end-point the ROADM’s ports; (iv) extends the NBI REST APIs to enable proper integration

with the TAPI Optical Network Orchestrator and the Path computation engine.

6.4 OLS CONTROLLER
The ADVA OLS controller is based on the Ensemble Network Controller software solution and

is offering a northbound ONF Transport-API (TAPI) towards the Optical Controller.

Figure 6-5 ADVA OLS Controller Northbound Interfaces

The OLS controller is exposing the topology. The topology model provides the explicit

multilayer topology that the Layer 2 to Layer 0 represents. This topology includes the OTS,

 D4.1 GA Number 101016663

42

OMS, and OCH. Based on ONF TAPI 2.1 models, the OLS controller supports a TAPI topology

flat abstraction model that collapses all layers into a single multilayer topology. A single

topology represents all network layers such as OCH, and Photonic Media, which include

media channels, OMS, OTS and so on. This topology is modelled as a tapi- topology:topology

object within the tapi-topology:topology-context/topology list. The current release supports

only a single topology, therefore the tapi-topology:topology-context/tapi-topology:nw-

topology-service object is not currently implemented.

SIPs represent the available service entry points. SIPs associate to all OCh and

PHOTONIC_MEDIA NEPs in the network support service configuration. A SIP logically maps

to one topology NEP through the tapi-topology:owned-node-edge-point/mapped-

serviceinterface-point attribute.

The TAPI topology data model consists of nodes and links. A node is a logical grouping of

ports that provide a flexible view definition. For example, one view might represent the

topology one-to-one, whereas another view can represent an entire network as a single

logical node.

The current implementation delivers a single default context, with a single topology

composed of:

• tapi-topology:node

• tapi-topology:link

The interface represents each physical node as a multilayer tapi-topology:node object, which

creates a 1:1 logical-physical topology. The forwarding domain is the domain associated with

the entire physical network element. The OLS TAPI interface does not report any information

about the internal structure of the network element. Each node displays: tapi-topology:node-

edge-point. Each NEP represents an externally visible port that belongs to the node. The TAPI

interface does not report any information about the internal structure of the network

element.

Each NEP represents:

• A client port

• An OTS port

• An OMS port

• An OCH trail termination point

The figure below shows an example of a dis-aggregate OLS with three ROADM nodes:

• Node A: a fully flexible ROADM with client traffic that enters from a filter.

• Node B: a pass-through ROADM.

• Node C: as NE A, with client traffic that exits from a filter.

 D4.1 GA Number 101016663

43

Figure 6-6 ADVA disaggregated OLS network example

This figure below shows the model instantiated on the TAPI interface in this scenario:

Figure 6-7 Corresponding model instantiated on the TAPI interface

6.5 OPTICAL PATH COMPUTATION ELEMENT
SDN controllers establish connections between the network elements, but they may not have

an overall view of the network or may decide to rely on an external path optimization engine

to make advanced specialized computations. This approach has been extensively applied in

the past in other contexts (e.g., GMPLS or IP). See [Pao13] for a historical review.

In B5G OPEN, TAPI has been chosen as the NBI for the optical network controllers (TAPI

Optical Network Orchestrator), handling the provisioning and control of optical connections.

The optical SDN controller may optionally use an external Path Computation Element, for

assisting it in the path computation of the connections.

 D4.1 GA Number 101016663

44

In TAPI, the Optical Path Computation Element (OPCE) determines an end-to-end path

between Service Interface Points (SIPs) and is developed as a TAPI-enabled component. The

orchestrator sends to the OPCE a TAPI path-request. This module requests an abstract

topology from the context manager, calculates the path and responses with TAPI path-reply

after finding a path within that internal context. The interactions between the OPCE and the

TAPI- Optical Network Orchestrator element will be governed by the standardized Path-

Computation-Service interface and APIs, as defined in [Man21], and when needed, standard

extensions may be proposed along the project.

A representative workflow of a typical interaction will be:

• The Network dimensioning engineer registers the OPCE in the TAPI Optical Network

Orchestrator SDN controller by its IP address and port. The service TAPI is known by

both entities.

• The TAPI Optical Network Orchestrator receives a new connection request with some

requirements (source and destination, bandwidth provision, latency constraints, QoT

conditions, etc.). This element detects the registered OPCE and forwards the request

to OPCE.

• The OPCE receives the request via TAPI, obtains the parameters as SIPs (end-points)

and topology model description and solves the path computation problem.

• Once computed the results, the OPCE sends the reply to the Optical Network

Orchestrator Controller. It internally updates a topology resources usage view, that

will consider the path as active, until the TAPI SDN controller instructs the OPCE

about its release.

• When the Optical SDN Controller receives the reply, it is responsible for the route

signalling between network elements. Additionally, as mentioned, it is responsible of

informing the OPCE about the path release, when it happens to occur.

The path computation function is constrained to provide optical paths and potentially

spectrum assignments, that end into viable network configurations, e.g., without spectrum

clashing. Additionally, optical impairment computations may be triggered, to assess the

Quality of Transmission (QoT) properties of the new connection, and of the already existing

co-propagating connections, that may be affected by the new signal.

The QoT estimation is a very relevant aspect in the presence of optical multiband, where the

increase of the fiber propagating total signal power and extended spectrum will stress the

OSNR and power margins. For this aspect, the optical OPCE will integrate an internal or

external optical signal performances engine. For this, the project may consider different

approaches, as the new developments, or modifications/incorporations of existing open-

source models like the ones in the GnPy initiative [GNPy]. GNPy is an open-source library for

building route planning and optimization tools in real-world mesh optical networks. It is

based on the Gaussian Noise Model, and has been present in the last years in different

research efforts (e. g. see [Ferra20]).

6.6 MULTI-DOMAIN SCENARIOS
Of special interest for B5G-OPEN is the “multi-OLS scenario”, (see Figure 6-8) which is to be

considered for use cases related to the provisioning of services across a muti-segment

network in a transparent way. In the multi-OLS scenario, several domains are interconnected

 D4.1 GA Number 101016663

45

transparently (e.g. via optical links), connecting, for example a degree of a ROADM to a

degree of a ROADM or add/drop to add/drop, as shown in the figure).

Such scenarios shall be addressed with an arrangement of controllers and the key issue to

research is how to retrieve the abstracted topological information to perform efficient path

computation.

Figure 6-8 Control plane architecture for the multi-OLS scenario, showing a back to back add/drop-add/drop

configuration.

 D4.1 GA Number 101016663

46

7 ACCESS CONTROL

The B5G-OPEN control and orchestration software system will also support the control of

access network segments in addition to the control and orchestration of packet and optical

network segments. In this direction, B5G-OPEN will have the capability to control access

networks including Passive Optical Networks (PONs) and LiFi networks. During the next

paragraphs, initials assumptions, as well as alternative architectural considerations are

presented regarding such control.

7.1 THE FRAMEWORK OF TDM-PON CONFIGURATION AND CONTROL
The B5G-OPEN TDM-PON infrastructure will be realised using an XGS-PON OLT pluggable

transceiver (e.g., TiBit pluggable) and a couple of pluggable ONUs (e.g., Tibit ONUs). The OLT

will be interfaced directly to a whitebox switch while the OLT is interconnected to the ONUs

by means of splitters, forming up an ODN branch.

The TiBit pluggables will be purchased from a third-party company (such as Juniper).

Regarding the control s/w for the pluggables, the project will consider the option of adapting

the vendor available software or develop an ad-hoc TDM-PON controller based on the OLT

PON SDK. The integration of these pluggables with the B5G-OPEN software platform is made

feasible at three different levels (from higher to lower layer):

• Via the PON Manager

• Via a PON Controller

• Direct through the OLT PON SDK or CLI

These options lead to four alternatives for the implementation of TDM-PON's control-plane,

presented in the next subsections.

7.1.1 First Alternative: Via the PON Manager

In this case, the PON vendor provides both the pluggable devices and open software for the

control and management of the TDM-PON. For example, Juniper supports this product via a

MicroClimate management system which may manage all TDM-PONs in a domain. At the

northbound interface, MicroClimate provides a set of APIs based on NETCONF or RESTCONF,

while the BBF/ITU YANG model ([BBF-TR385] definition, [BBF-GIT1] implementation) is the

common method to model the TDM-PON configuration parameters. Similar solutions are

provided from other companies. In this case, the TDM-PON control-plane architecture and

the steps to carry out the integration are illustrated in Figure 7-1, and are as follows: a Higher-

Layer PON Controller is developed as part of the B5G-OPEN software platform, which

includes the following functionalities:

• A NETCONF/REST client on the Southbound Interface (SBI) through which the

communication with the PON Manager the vendor has developed (e.g. the

MicroClimate in the Juniper’s case)

• A set of PON abstractions, the objective of which is to extract the PON parameters

and their values and then to expose to the higher layers only the parameters that are

valuable for the B5G-OPEN software platform.

• A NETCONF/RESTCONF server at the Northbound Interface (NBI) which exposes a set

of APIs that allow the B5G-OPEN app to provision and configure the PONs. This API

 D4.1 GA Number 101016663

47

is using a simplified (subset) BBU/ITU YANG model which depend on the abstraction

and transformation realised in the lower layer.

Figure 7-1 B5G-OPEN Control of PON through the PON Manager

7.1.2 Second Alternative: via a PON Controller

In this second alternative, the PON vendor provides the pluggable software and the PON

controller software. The TDM-PON control-plane architecture and its integration to the B5G

OPEN platform are illustrated in Figure 7-2.

Since the PON Controller will be provided by the PON vendor, a Higher-Layer PON Controller

will be developed as part of the B5G-OPEN software platform, providing a slightly different

functionality:

• The information exchange is again based on the BBF/ITU YANG models. However,

the SBI that communicates with the PON Controller is a software client that is

developed based on OLT PON SDK.

• Similar to the previous case, a set of PON abstractions is developed that extracts the

PON parameters and their values. Only the valuable for the B5G-OPEN software

platform set parameters are exposes to the higher layers.

• A NETCONF/REST server at the Northbound Interface (NBI) which exposes a set of

APIs that allow the B5G-ONP app to provision and configure the PONs. This API is

using a simplified (subset) BBU/ITU YANG model which depend on the abstraction

and transformation realised in the lower layer.

 D4.1 GA Number 101016663

48

Figure 7-2 B5G-OPEN Control of PON through the PON Controller

7.1.3 Third Alternative: Direct interfacing to the pluggable OLT – Integration to the platform

via the B5G-ONP app

In this case, the PON vendor provides only the basic software for the operation of the

pluggable. The TDM-PON control-plane architecture and the proposed approach for the

integration with the B5G OPEN platform are illustrated in Figure 7-3. Two software

components are developed as part of the B5G-OPEN software platform: a) a PON agent that

allows a direct communication with the pluggables; b) a PON controller through which the

PON is controlled.

The PON agent consists of the following parts:

• A software client is based on an OLT PON SDK or it is set by establishing a CLI (or

similar) connection with the OLT pluggable at the NBI.

• A REST server for the communication with the PON Controller.

In addition, the PON controller will include the following functionalities:

• A REST client developed on the SBI for the communication with the PON Agent. The

information exchange is again based on the BBU/ITU YANG models.

• A set of PON abstractions, similar to the previous cases.

• A NETCONF/REST server on the NBI for the communication with the B5G-ONP app.

 D4.1 GA Number 101016663

49

Figure 7-3 Direct communication with the pluggables (B5G-ONP app integration)

7.1.4 Fourth Alternative: Direct interfacing to the pluggable OLT – Integration to the

platform via the B5G Packet Controller

This final alternative differs from the previous one in the way the control elements are

integrated to the remaining B5G-OPEN software components. Therefore, while in the

previous case the integration is realised with the B5G-ONP app, under the current

framework, the integration is realised at a lower hierarchical level, i.e., by means of the

packet controller. The TDM-PON control-plane architecture and the proposed approach for

the integration with the B5G OPEN platform are illustrated in Figure 7-4.

In this case, a PON agent needs is developed as an integral part of the B5G-OPEN software

platform, featuring the following functionalities:

• A software client is developed by means the OLT PON SDK or by establishing a CLI (or

similar) connection with the OLT pluggable on the SBI.

• A set of PON abstraction functionalities, similar to the previous alternatives. In this

case, the PON configuration should be represented as a set of nodes and links. In

addition, in order to support some basic QoS on access connections, the upstream

queue configuration should be also included in the modelling.

• A REST server/client on the NBI for the communication with the Packet Controller.

 D4.1 GA Number 101016663

50

Figure 7-4 Direct communication with the pluggables (Packet Controller integration)

7.1.5 Discussion on the alternative considerations

The alternatives listed in the previous subsections all have advantages and disadvantages.

The option that delegates the integration of the B5G-OPEN platform to a higher layer is not

the preferred one as it is neither ubiquitous nor vendor agnostic. Similar arguments hold for

the second alterative (i.e., to control the PON by means of a vendor provided controller),

although the implications require further study. Therefore, the third and fourth alternatives

are attractive as they exploit schemes where the information exchange bypass both the

Manager and the Controller. Actually, the fourth alternative has a higher level of universality

since the PON control will lay below the packet optical control and therefore it can be

controlled like an ordinary switch. However, this fourth alternative is facing its own

challenges which emerge from the abstraction models and the representation of PON’s QoS

parameters that seems not to be trivial. As such, the third alternative presents itself as a good

compromise between the pros and cons and it emerges as the preferable option at the time

of the writing of this deliverable.

7.2 LIFI CONTROL

The LiFi access networks will be provided by Access Points (APs), named LiFi-XC, provided by

pureLiFi. This LiFi AP device, as illustrated in Figure 7-5(a), converts network information

coming in from the Ethernet port into wireless light signals via the connected LED lamp for

the downlink. The uplink signal will be sent via the user device in Infrared spectrum and is

captured by the AP device. The AP structure is shown in Figure 7-5(b). The AP is implemented

using an embedded Linux device to bridge Ethernet connection with LiFi interface

implemented with baseband processor and analogue front-end devices. The AP supports

automatic provisioning using TR-069 protocol as well as simple network management

protocol (SNMP) v1, v2c and v3.

 D4.1 GA Number 101016663

51

Figure 7-5: LiFi-XC AP

As the development in B5G-OPEN, these following supports will be implemented in the LiFi

AP, as shown in Figure 7-6:

1) In the initial assumption of LiFi control for B5G-OPEN, it will be implemented to

support for NETCONF interface. A LiFi specific YANG model will be proposed with

basic configurations to configure LiFi AP. The motivation behind NETCONF and YANG

is that instead of having individual devices with functionalities, there is a need to

have a network management system that manages the network at the service level.

To integrate the LiFi access technology in the overall B5G-OPEN architecture,

NETCONF and YANG add more functionalities in the network management.

2) A telemetry adaptor will be implemented within LiFi AP for LiFi telemetry data

collection and transmission. Some telemetry data could be used for monitoring the

system performance, such as the received signal powers, the transmit and received

throughput, etc. For LiFi specifically, some other information could also be used for

control purpose. For example, since in LiFi the coverage of each AP is much smaller

compared to other radio based wireless access technologies, by simply knowing the

SSID of the AP which the user connects to, the location information could be

obtained. In addition, the SSID of APs which are not being connected as well as their

inactive time could be obtained via telemetry data, then some actions could be taken

to save the energy consumption smartly such as by dimming these LED transmitters.

Figure 7-6: Initial assumption for LiFi control

 D4.1 GA Number 101016663

52

8 ORCHESTRATION

8.1 IT AND NETWORK RESOURCES ORCHESTRATION
The orchestrations process consists of the coordination of both IT and network resources of

the infrastructure, in an efficient and harmonized form, pursuing a global optimization of the

infrastructure usage.

The so-called slice is the key service requiring such a joint IT and network allocations. In B5G-

OPEN, we generalize the concept of slice as a set of IT requirements to be allocated in the IT

infrastructure, together with a set of network requirements connecting them, to be allocated

in the network infrastructure. This definition will be sufficient for this section. A discussion

on the particular form in which the slice concept is elaborated in B5G-OPEN, is addressed in

Section 12.

The coordinated optimization of both IT and network resources has been shown as clearly

beneficial in a number of research works in the community [Gar20], [Ped18], [Muq21].

Intuitively, it is easy to find to examples where trivial blocking situations occur if such a

coordination is not present (e.g., placing IT application in clusters without enough network

connectivity to accommodate the application traffic).

In B5G-OPEN, the orchestration process is implemented in a collaborative form among three

key groups of components:

1. The IT resources, potentially distributed in one or more clusters, at different

locations across the operators’ infrastructure, are handled by one or more IT

orchestrator systems.

2. The network resource, involving IP/MPLS and optical layers, are controllable via one

or more SDN controllers.

The coordination of IT and network resource allocations is handled by the B5G-ONP (Open

Network Planner). The key functions of the ONP are providing tools for the design,

optimization, and planning of services.

Figure 3-1 represents the macroscopic B5G-OPEN architecture and service interfaces

including a representative infrastructure example, that will help us to illustrate how the

coordination is performed. The figure focuses on a simplified network composed of two

locations (left and right), with an IT cluster and a packet-optical white-box in each of them.

The white-box includes a number of optical coherent pluggables. Optical transparent paths

are handled by an optical line system (OLS) controlling three ROADMS. The optical network

is controlled by the optical SDN controller, which is accessed via a TAPI Optical Network

Orchestrator, that exports a standardized TAPI North Bound Interface (NBI). The

configuration of the white-boxes in its packet forwarding-related aspects is handled by the

IP SDN controller.

During the provisioning process, the B5G-ONP receives the commands from the user (e.g.,

via a graphical user interface, or via the open API exposed). The type of services that can be

provisioned are discussed in Section 12. To accomplish the provisioning, the B5G-ONP

leverages on the Kubernetes systems and SDN controllers as shown in the figure.

 D4.1 GA Number 101016663

53

Note that the described architecture, permits implementing different strategies for the

allocation decision process. For instance, the B5G-ONP can delegate in the SDN controllers

the network path computations, or alternatively instruct the SDN controllers which paths to

allocate according to its centralized decision. We believe such flexibility is a key benefit of

this approach, that makes it eligible for different use cases and network scales.

8.2 B5G-ONP MODULES
B5G-ONP consists of three main modules (see Figure 8-1):

• Provisioning and discovery module. This module is intended to manage the

provisioning and termination of different operator-level services, as the ones

discussed in Section 12, that may involve It and/or network resources. Such functions

are accessed via an open API designed along the project. However, a Graphical User

Interface will be prototyped to ease the interactions.

• Dimensioning and analysis module. This module hosts different algorithmic

resources, that realize the resource allocation decisions, in different use cases,

covering both offline network dimensioning, and online resource allocations. These

modules are designed to be accessed via an open API defined along the project, and

also a prototyped GUI.

• Optical Path Computation Element. This module will be specifically developed to be

able to interact with the TAPI Optical Network Orchestrator, in order to act as an

Optical Path Computation Element node, to which the TAPI Optical Network

Orchestrator can delegate the optical path computations.

Figure 8-1 Coordination of Kubernetes cluster from B5G-ONP

8.3 INTERACTIONS OF THE B5G-ONP WITH THE SDN CONTROLLERS
The B5G-ONP will interact with the SDN controllers in order to instruct them in the

provisioning workflows. For this, the interactions will be implemented via the regular North

Bound Interface (NBI) APIs of the controllers, following the best practices. Additionally, slow-

changing monitoring resource occupation information, suitable for provisioning use cases,

may be obtained from: i) SDN controller NBIs; ii) network telemetry systems. The decisions

 D4.1 GA Number 101016663

54

on which particular performance indicators will be accessed and from where will be

elaborated along the project evolution.

8.4 INTERACTIONS OF THE B5G-ONP WITH THE IT ORCHESTRATOR SYSTEMS
As better discussed in Section 12, B5G-OPEN will explore Kubernetes as the baseline

orchestration system in its main efforts, due to benefits like microservice-orientation, agility,

maturity of its APIs, and industry adoption.

In a typical microservice-based deployment, the microservices run independently from

others and communicate between them using well-defined RESTful APIs and synchronous

protocols such as HTTP. This method is light, fast, easy to spin up and allows scaling only

those microservices that require more resources to achieve a proper load distribution.

Nowadays, it is of common use within the most popular cloud providers such as Google,

Microsoft and Amazon. Kubernetes eases the administration tasks because it automates and

scales the processes, not being aware of the internal tasks.

Kubernetes coordinates a highly available cluster of computers that are connected to work

as a single unit without specifying the individual machines. The containerized applications

decouple the deployment and applications from individual hosts. Figure 8-2 shows how the

Kubernetes cluster operate. The Kubernetes cluster consists of two resources, a Master Node

coordinates the cluster and Working Nodes that run applications (worker machines). The

communication between the Master Node and the Working Nodes is realized by the

Kubernetes API exposed by the Master Node [K8s].

Figure 8-2 Kubernetes cluster module (source: [K8s])

The actual deployed services are distributed in the network onto different physical or virtual

nodes and require high-performance network connections to be able to provide optimal

communication (e.g., min latency). Kubernetes dynamically orchestrates the services and

eases this task for the users.

Kubernetes management is based on two key concepts: a Kubernetes service, and Pods. A

Pod is a group of one or more related containers, of the same service, that have to be

deployed in the same worker node. A Kubernetes service is a component that typically

represents an application, potentially composed of multiple pods, each of them that can be

optionally deployed in different worker nodes, but with a common management. According

 D4.1 GA Number 101016663

55

to deployment requirements, the Pods of the service can be present on all the Working

Nodes (DaemonSet) or some of them (Deployment).

To cover IT orchestration-related use cases, the key interactions that are anticipated

between the B5G-ONP and Kubernetes deployments are:

1. B5G-ONP discovery of Kubernetes deployments. An API should be incorporated in

the B5G-ONP to permit the registering of Kubernetes clusters, e.g., identified by its

master node access information. Once a Kubernetes system is registered, its internal

capabilities should be discovered via the Kubernetes API. After that, the Kubernetes

resources will be available for B5G-ONP to allocate new B5G-OPEN IT services, e.g.,

as part of B5G-OPEN slices.

2. B5G-ONP provision and release of microservice-based applications in the IT

resources of Kubernetes systems. The B5G-ONP will be able to jointly optimize the

usage of IT and network resources in the allocation of new slices. For this, the B5G-

ONP should interact with the Kubernetes APIs for covering the IT part allocation and

resource releases in an automatic form.

3. B5G-ONP extraction of occupation and performance KPIs from the Kubernetes. In

order to cover its network optimization and planning role, the B5G-ONP should have

access to the different KPIs of the registered Kubernetes systems. For this, the

project will explore the existing Kubernetes APIs.

Practical aspect of API interactions and potential API extensions

The communication between B5G-ONP and Kubernetes uses the HTTP REST API that

Kubernetes exposes. The Kubernetes API [K8sAPI] lets you query and manipulate the state of

API objects in Kubernetes (e.g., Pods, Namespaces, ConfigMaps, and Events). Kubernetes

supports multiple API versions, each at a different API path, such as /api/v1 or /api/v2. API

resources are distinguished by their API group, resource type, namespace (for namespaced

resources), and name. The API server handles the conversion between API versions

transparently: all the different versions are representations of the same persisted data (see

Figure 8-3). The API server may serve the same underlying data through multiple API versions.

 D4.1 GA Number 101016663

56

Figure 8-3 Different API versions access to a unique persisted data

Any system needs to grow and change as new use cases emerge or existing one change.

Therefore, Kubernetes has designed the Kubernetes API to continuously change and grow.

The Kubernetes project aims to not break compatibility with existing clients, and to maintain

that compatibility for a length of time so that other projects have an opportunity to adapt.

Additionally, Kubernetes provides two ways to add custom resources to your cluster: Custom

Resource Definitions (CRDs) and API Aggregation (AA).

• The CRD object definition creates a new custom resource with name and schema

served and handled by Kubernetes API, with less flexibility than with AA. The CRD

name must be a valid DNS subdomain name. No needs to handle multiple versions

of the API, no additional services and does not require programming.

• AA, the user writes and deploys a custom API server allowing specialized

implementations for customer resources. Once the main API server receive queries

to custom API server, it forwards them.

These two alternatives may be explored in B5G-OPEN, in case that a Kubernetes needs to be

extended to accommodate project needs.

 D4.1 GA Number 101016663

57

9 PACKET/OPTICAL INTEGRATION

9.1 DISCUSSION ON ARCHITECTURAL OPTIONS
Traditional metro networks are composed by packet switching nodes (i.e., routers)

interconnected by optical transport links. In this scenario, packet and optical domains are

clearly separated, using dedicated controllers. However, standalone muxponders and

transponders are going to be replaced in optical metro and transport networks by the

utilization of hybrid packet-optical nodes equipped with coherent pluggable transceivers. In

this scenario, traditional packet control plane is not adequate because it is unable to manage

and fully support the configuration of optical parameters associated to pluggable modules.

Moreover, the coordination between the optical and the packet layer within this novel hybrid

nodes has not been standardized yet and requires a careful design in order to enable correct

configuration and avoid management conflicts.

Two alternative SDN-based hierarchical solutions are in phase of discussion in the community

enabling control of coherent pluggable transceivers in a multi-layer network exploiting hybrid

packet-optical nodes [Sca21, Sga21, Ger22]. This section expands upon the aforementioned

works and provides implementation details, experimental comparison and discussion on the

possible solutions.

9.1.1 Reference scenario and proposed solutions

Figure 9-1 shows a traditional metro network using packet switching nodes (i.e., routers) and

stand-alone transponders interconnected through optical line systems (OLSs). Where OLS are

typically composed by a number of ROADMs and optical amplifiers. In this scenario, the SDN

architecture is implemented with a clear domain separation. Three controllers are typically

considered: a Hierarchical Controller (HrC) coordinating the end-to-end connectivity; an

Optical Controller (OptC) in charge of transponders and OLS; and a Packet Controller (PckC)

in charge of packet switching devices. However, since the two domains are practically

independent of each other, the role of the HrC is almost limited to forwarding the received

requests to one of the child controllers which, traditionally, has full and exclusive visibility on

all underlying network elements. For example, OptC is the unique entity accessing the

transponders while PckC is the unique entity configuring the packet nodes.

 D4.1 GA Number 101016663

58

Figure 9-1 Traditional SDN architecture for transponder-based optical networks.

The introduction of packet-optical nodes imposes the redesign of the overall SDN control

architecture. Indeed, transponders are replaced by packet-optical nodes equipped with

pluggable modules and the traditional control mechanisms provided by the PckC only are not

sufficient to configure optical parameters. Since, in large metro networks, a single controller

with visibility of both layers is not feasible due to scalability issues, a proper workflow needs

to be defined to enable coordinated operations among controllers, where the HrC assumes

a fundamental coordination role.

Figure 9-2and Figure 9-3shows the two solutions considered to provide coordinated control

of packet-optical nodes, i.e., standalone optical transponders are not used in this scenario.

With both solutions, the NETCONF protocol is considered for the pluggables configuration,

while packet configuration can be performed via NETCONF or P4 protocols.

The first approach, here named Exclusive (Excl), is shown in Figure 9-2. The Excl approach

provides access to the packet-optical nodes from the PckC only. That is, configurations

related to both packet forwarding and optical pluggables are enforced by the PckC. In this

case, the optical parameters (e.g., central frequency, TX power, operational mode) are

decided a priori by the OptC and exchanged with the PckC through the HrC.

The second approach, here named Concurrent (Conc), is shown in Figure 9-3. The Conc

approach relies on the joint control of the packet-optical nodes from both PckC and OptC.

Configurations related to packet forwarding are provided by the PckC, while those related to

optical pluggable modules are enforced directly by the OptC. In this case, proper solutions

are needed to guarantee coordinated access as well as the proper control segregation for

avoiding possible conflicts.

The Excl approach is also considered within the TIP project [TipMantra] referred as single SBI

management. However, TIP also considers an intermediate solution, referred as dual SBI

management, where the OptC has read access to the packet device transceiver information,

but their configuration in actually enforced by the PackC that receives the required

 D4.1 GA Number 101016663

59

configuration values from the OptC via HrC. From an implementation point of view the dual

SBI management solution significantly simplifies the Conc approach because it avoids the

issue of having two controllers with write rights on the same device, but from a functional

point of view it is equivalent to the Conc approach only introducing more latency on the

communication channel between the OptC and the packet-optical node.

Figure 9-2 Exclusive hierarchical control plane solution

Figure 9-3 Concurrent hierarchical control plane solution

The workflow for the establishment of end-to-end intents involving both the packet and the

optical layer is depicted in Figure 9-4using the Excl approach. At step 1, HrC receives a

connectivity request and computes the related end-to-end path over the multi-layer network

topology. If the activation of a new lightpath is required, HrC sends an optical intent request

to the OptC (step 2). At step 3, OptC configures the OLS devices traversed by the lightpath

and, once the optical intent is installed, a notification is sent to HrC, including the utilized

optical parameters (step 4). At step 5, HrC shares with PckC the values notified by OptC (i.e.,

frequency, TX power and operational mode) and requests the setup of packet intent. PckC

configures the pluggable modules and, once the link becomes active, it installs the packet

intent (step 6). Finally, at step 7, PckC informs HrC that the packet connection was

successfully configured.

 D4.1 GA Number 101016663

60

The workflow for the establishment of an end-to-end intent using the Conc approach is

depicted Figure 9-5. At step 1, HrC receives a connectivity request and computes the related

end-to-end path over the multi-layer network topology. If the activation of a new lightpath

is required, HrC sends an optical intent request to the OptC (step 2). At step 3, OptC

configures the OLS devices and the pluggables involved in the lightpath and, once the optical

intent is installed, a notification is sent back to HrC (step 4). In this case, the configured optical

parameters are not notified to the HrC, because the configuration of the optical domain is

fully managed by OptC. At step 5, HrC requests PckC to configure a new packet intent. PckC

installs the packet intent (step 6) and informs HrC that the packet connection was

successfully configured (step 7). In case a path with enough bandwidth already exists in the

optical layer, steps 2, 3 and 4 are skipped by HrC, directly moving to step 5 for the installation

of the packet intent. In case a path with enough bandwidth already exists in the optical layer,

steps 2, 3 and 4 are skipped by HrC, directly moving to step 5 for the installation of the packet

intent without requiring the activation of additional optical pluggables.

Figure 9-4 Exclusive end-to-end intent setup workflow

Figure 9-5 Concurrent end-to-end intent setup workflow.

9.1.2 Packet-optical node

For comparing the two approaches an experimental testbed has been setup including a

preliminary implementation of a packet-optical node where the optical pluggable is emulated

using an external transceiver. This solution has been preliminary adopted because nodes

supporting the utilization of pluggables are not yet available in the partner labs. Other

solution will be used during the project when more advanced hardware will be available,

 D4.1 GA Number 101016663

61

specifically two options are under evaluation: (i) using a single device with coherent

pluggables and P4/P4 Runtime support; (ii) using two separate devices connected through a

direct packet link: one device with P4/P4Runtime support and a second device with basic

packet processing features and coherent pluggables support.

The internal software architecture of the considered packet-optical node is shown in Figure

9-6. A Mellanox/NVIDIA SN2010 Ethernet switch, running the SONiC NOS has been used. In

addition to the default SONiC applications, it includes additional containerized

functionalities, i.e., the NETCONF agent container and the P4/P4Runtime container,

depending on the considered scenario (i.e., Excl or Cunc).

Figure 9-6 Packet-Optical node architecture: the packet-optical node exposes P4 Runtime and NETCONF

interfaces toward the control plane.

The NETCONF agent container is used to configure and monitor optical pluggables. The agent

uses the OpenConfig model for hardware representation, including ports and pluggables. To

avoid misconfiguration issues when multiple controllers access the node, ownership

segregation has been implemented using the Network Configuration Access Control Model

(NCACM) solution, as detailed in RFC 8341. More specifically, for each configured user (i.e.,

PckC and OptC), a set of rules is configured in the NETCONF agent, permitting or denying

operations (e.g., write, read-only) over specific prefix-based configuration parts.

The NETCONF container is able to direct access the C-CMIS driver of the physically-connected

pluggable modules, managing the optical parameters. As we do not have yet coherent

pluggable modules in our laboratories, an external coherent transceiver (e.g., Ericsson SPO

xPonder with coherent 100G line ports) acts as pluggable. That is, its configuration is not

provided by the SDN controller directly, instead, it is provided by the packet-optical node as

for locally equipped transceivers. More in detail, when the controller interacts via NETCONF

with the packet-optical node, the agent leverages a REST interface toward the coherent

transceiver to configure/read the optical parameters, as it is a pluggable module attached to

the box.

The P4/P4Runtime is the interface leveraged by the PckC to configure the packet layer. Such

interface has been implemented using a containerized Bmv2. This container-based solution

provides all the P4 features while processing all traffic at software level in the switch CPU.

 D4.1 GA Number 101016663

62

Thus, switching performance is limited but perfectly usable for therefore usable validation

and demonstration purposes.

9.1.3 SDN controller applications

The implementation of SDN controllers is based on ONOS. Specifically, the parent controller

and the two child controllers has been implemented developing a dedicated ONOS NetApp

(i.e., the HrC app, the OptC app and the PckC app).

• The HrC app retrieves and maintains the information on the status of entire network,

communicating with child SDN controllers through REST APIs. For each connection

request, it computes the end-to-end path and splits the computed path between the

child controllers, relying on both packet and optical domains, i.e., where needed a

new lightpath is installed in the optical domain.

• The PckC app allows the communication between PckC and HrC. Two versions of the

application have been developed, implementing the Excl and Conc approaches. More

in detail, the PckC app may be deployed with (or without) a Pluggable Manager

module that is not required when con Conc approach is exploited because plugabbles

are fully configured by the OptC.

• The OptC app enables the communication between OptC and the HrC, managing and

retrieving the pluggables optical parameters. The OptC app is developed with or

without the Pluggable Manager module according to the two considered scenarios,

i.e., using the Excl approach such module is not required because pluggables are

configured by PckC.

In addition, for supporting the Excl approach where the OptC only configures the ROADMs

(while the configuration of the pluggables is performed by the PckC), the ONOS intent service

has been extended to support intent requests whose end-points are ROADMs interfaces.

9.1.4 Experimental evaluation

The packet-optical testbed topology used for the experimental evaluation of the two

considered approaches is illustrated in Figure 9-7 and includes two packet-optical nodes

equipped with pluggable transceivers, three emulated ROADMs (e.g., OpenROADM

NETCONF agents running in dedicated docker containers), and four P4-based emulated

switches (e.g., running BMv2 software switch). Each P4 switch is emulated on a dedicated

bare metal server (Intel Xeon E5-2643 v3 6-core 3.40 GHz clock, 32 GB RAM) and links are

implemented through real physical interfaces (i.e., Mellanox ConnectX3 Network Interface

Cards).

Figure 9-7 Testbed topology.

 D4.1 GA Number 101016663

63

Each packet-optical node consists of a Mellanox/NVIDIA SN2010 Ethernet switch, which runs

the SONiC operating system over ONIE. In addition to the basic SONiC components, the

P4/P4Runtime and NETCONF docker containers have been added, as shown in Figure 9-6. As

presented before, the xPonder Ericsson SPO with coherent line ports at 100G acts as

pluggable coherent module in packet-optical nodes.

The scenarios presented in the previous sections have been validated starting from an empty

network where no lightpaths are configured in the optical network, thus the packet domain

is composed by two islands. The first goal of the proposed experimental test is to validate

the procedure to establish an end-to-end intent (i.e., spanning across the packet and optical

domains). Secondly, we have compared the end-to-end connection setup time (i.e., Te2e)

obtained considering the two approaches repeating the connection setup experiment for 30

times. Obtained results are illustrated in the following.

Figure 9-8 Distribution of Te2e over 30 experiments using Concurrent workflow, average value Te2e = 2.38 s.

Figure 9-9 Distribution of Te2e over 30 experiments using Exclusive workflow, average value Te2e = 3.59 s.

The distributions obtained for the end-to-end connection setup time Te2e using the two

considered workflows are respectively illustrated in Fig. H and Fig. I. The results prove that

the Concurrent approach guarantees a faster Te2e, average value is faster of about 34% (3.59

seconds for Exclusive and 2.38 seconds for Concurrent). This happens because using the

Exclusive approach, the configuration of the optical devices is performed by two different

controllers (i.e., OptC configures the ROADMs, then PckC configures the pluggables). Thus,

to allow the Exclusive workflow, additional information is required to be exchanged between

 D4.1 GA Number 101016663

64

the two child controllers (e.g., the lightpath central frequency decided by OptC) and

therefore the configuration of pluggables is executed only when the configuration of

ROADMs is fully completed. Conversely, with the Concurrent workflow the configuration

parameters of ROADMs and pluggables are decided at OptC, and their actual configuration is

triggered in parallel, thus leading to a faster end-to-end connection setup.

Within the B5G-OPEN project the Concurrent approach will be adopted for the control plane

implementation. This choice that is mostly driven by practical implementation consideration

is also supported by the experimental results described in this section, that indicate

Concurrent option as the one potentially achieving faster end-to-end configuration.

9.2 SONIC GENERIC ARCHITECTURE
SONiC system's architecture is composed of various modules implemented as Docker

containers that interact among each other through a centralized and scalable infrastructure.

At the center of this infrastructure resides a redis-database engine, a key-value database that

provides a language independent interface to all SONiC subsystems. Thanks to the

publisher/subscriber messaging paradigm offered by the redis-engine infrastructure,

applications can subscribe only to the data-views that they require.

The containerized architecture allows reducing coupling between independent modules and

between the functionalities implemented by the module and the platform-specific lower-

layer details. Moreover, it allows easy extensibility because new features may be added as

additional containers without any impact on existing ones.

The docker containers run within the SONiC operating system, based on the Linux kernel, at

user space level. Linux allows access to the hardware of the machine only in kernel mode,

i.e., elevating the privileges of the running process in controlled mode. For this reason, the

interface to the underlying hardware takes place by means of appropriate drivers. SONiC

exploits the possibility of extending the Linux kernel thanks to the so-called Loadable Kernel

Modules (LKM), which avoid the need to prepare a kernel version containing the drivers

needed by the specific hardware, considerably simplifying the support of switches with

different features.

 D4.1 GA Number 101016663

65

Figure 9-10 SONiC system architecture

Figure 9-10 shows a high-level view of the functionality enclosed within each docker-

container, and how these containers interact among them. Some key modules, as the SONiC's

configuration module (sonic-cfggen) and the SONiC's CLI, are not implemented as containers

but run directly on the linux-host system itself.

Currently, SONiC breaks its main functional components into the following docker containers:

Dhcp-relay container: enables the relay of DHCP requests from a subnet with no DHCP server

to one or more DHCP servers on other subnets.

Pmon container: in charge of running sensord, a daemon used to periodically log sensor

readings from hardware components and to alert when an alarm is signaled. Pmon container

also hosts fancontrol process to collect fan-related state from the corresponding platform

drivers.

Snmp container: hosts snmp features. It includes: i) Snmpd: in charge of handling incoming

SNMP polls from external network elements; and ii) Snmp-agent: feeds snmpd with

information collected from SONiC databases in the centralized redis-engine.

Lldp container: hosts LLDP functionality. It inclues: i) Lldp: this is the process establishing

LLDP connections with external peers; ii) Lldp_syncd: in charge of uploading LLDP's

discovered state to the centralized database; and iii) Lldpmgr: provides configuration

capabilities to lldp daemon by subscribing to STATE_DB within the Redis database.

Bgp container: runs one of the supported routing-stacks: Quagga or FRR. Even though the

container is named after the routing-protocol being used (BGP), in reality, these routing-

stacks can run various other protocols (such as OSPF, ISIS, RIP, LDP, etc.).

 D4.1 GA Number 101016663

66

BGP container functionalities are broken down as follows:

• bgpd: regular BGP implementation. Routing state received by means of the protocol

are pushed down to the forwarding-plane through the zebra/fpmsyncd interface.

• zebra: acts as a traditional IP routing-manager; that is, it provides kernel routing-

table updates, interface-lookups and route-redistribution services across different

protocols. Zebra also pushes the computed FIB down to both kernel (through netlink

interface) and to south-bound components involved in the forwarding process,

through Forwarding-Plane-Manager interface (FPM).

• fpmsyncd: small daemon in charge of collecting the FIB state generated by zebra and

dumping its content into the Application-DB table (APPL_DB) of the redis-engine.

Teamd container: runs Link Aggregation functionality (LAG). It includes: i) teamd is a linux-

based open-source implementation of LAG protocol; and ii) teamsyncd process allows the

interaction between teamd and south-bound subsystems.

Swss container: the Switch State Service (SwSS) container comprises of a collection of tools

to allow an effective communication among all SONiC modules. Swss also hosts the processes

in charge of the north-bound interaction with the SONiC application layer with the exception

of fpmsyncd, teamsyncd and lldp_syncd processes which run within other containers. The

goal of all these processes is to provide the means to allow connectivity between SONiC

applications and SONiC's centralized message infrastructure (redis-engine).

• portsyncd: pushes port-related state, collected from the hardware-profile config files

and by listening to netlink events, into APPL_DB. Attributes such as port-speeds,

lanes and MTU are transferred through this channel.

• intfsyncd: listens to interface-related netlink events and push collected state into

APPL_DB. Attributes such as new/changed ip-addresses associated to an interface

are handled by this process.

• neighsyncd: Listens to neighbor-related netlink events triggered by newly discovered

neighbors as a result of ARP processing. Attributes such as the mac-address and

neighbor's address-family are handled by this daemon and transferred to APPL_DB.

• orchagent: contains the logic to extract all the relevant state injected by *syncd

daemons, processes this information accordingly, and pushes it into the ASIC_DB

within the redis-engine.

• intfmgrd: reacts to state arriving from APPL_DB, CONFIG_DB and STATE_DB to

configure interfaces in the linux kernel.

• vlanmgrd: reacts to state arriving from APPL_DB, CONFIG_DB and STATE_DB to

configure VLAN-interfaces in the linux kernel.

Database container: hosts the Redis-database engine. Databases held within this engine are

accessible to SONiC applications through a UNIX socket. These are the main databases hosted

by the Redis engine:

• APPL_DB: stores the state generated by all application containers -- routes, next-

hops, neighbors, etc.

• CONFIG_DB: stores the configuration state created by SONiC applications -- port

configurations, interfaces, VLANs, etc.

• STATE_DB: stores "key" operational state for entities configured in the system. This

state is used to resolve dependencies between different SONiC subsystems.

 D4.1 GA Number 101016663

67

• ASIC_DB: stores the necessary state to drive ASIC's configuration and operation.

• COUNTERS_DB: stores counters/statistics associated to each port in the system.

Syncd container: its goal is to provide a mechanism to allow the synchronization of the

switch's network state with the switch's actual hardware/ASIC. This includes the initialization,

the configuration and the collection of the switch's ASIC current status. The main logical

components are:

• syncd: process in charge of executing the synchronization logic mentioned above. At

compilation time, syncd links with the ASIC SDK library provided by the hardware-

vendor, and injects state to the ASICs by invoking the interfaces provided for such

effect.

• SAI API: the Switch Abstraction Interface (SAI) defines the API to provide a vendor-

independent way of controlling forwarding elements, such as a switching ASIC, an

NPU or a software switch in a uniform manner.

• ASIC SDK: hardware vendors are expected to provide a SAI-friendly implementation

of the SDK required to drive their ASICs. This implementation is typically provided in

the form of a dynamic-linked-library.

9.3 PLUGGABLE MANAGEMENT AND CONTROL
Whitin the BG5-OPEN project, the SONiC network operating system (NOS) running on the

packet-optical node is extended with a new docker container that enables SDN on SONiC. A

NETCONF Agent, developed in the BG5-OPEN project, is deployed in a docker container that

runs within the NOS and, as depicted in Figure 9-11, communicates with the other containers

in the system for retrieving and writing information related to coherent pluggable modules.

More in detail, in the SONiC version 202205 the pmon container runs an updated version of

xcvrd daemon, capable to retrieve and write the coherent optical parameters from/to the

registers of pluggable modules. The interfaces used by the demon are compliant with the

CMIS v5.0 and C-CMIS v1.1 standards. The daemon periodically stores the optical

transmission parameters in the Redis database.

 D4.1 GA Number 101016663

68

Figure 9-11 Pluggable management and control architecture

SONiC utilizes custom YANG models that do not take into account optical pluggable modules.

To address this limitation, in B5G-OPEN, the standard OpenConfig YANG model openconfig-

platform-transceiver.yang is used within the NETCONF agent to model the optical pluggable

modules. More in details, the parameters in the model can be filled in two ways: in the first

one, the agent reads the optical parameter stored by the xcvrd daemon from the Redis

database. In the second one, the agent reads or writes the optical parameters of the

pluggable module leveraging the API used by xcvrd.Indeed, as depicted in Figure 9-11 two

bidirectional arrows reach the agent, they represent the communication interfaces (e.g., a

socket or/and REST API), developed in B5G-OPEN to allow the exchange of information

between the agent and/or Redis/Pmon containers. In B5G-OPEN the optical SDN controller

communicates with the NETCONF agent to monitor and control the pluggable modules

placed in the packet optical nodes.

9.4 P2MP PLUGGABLE MANAGEMENT AND CONTROL
The management of P2MP pluggable modules proposed by Open XR [OpenXR] considers a

dual management structure. The first path, as shown in Figure 9-12 left side, provides the

“traditional” functionality via the register-based information model defined in Multi-source

agreements such as OIF CMIS.

However, the latest version of CMIS lack the capabilities of setting up multiple subcarriers or

dynamically assigning traffic to the different subcarriers. Hence, a second path, as shown in

Figure 9-12 right, is proposed to be able to communicate directly with the P2MP pluggable.

When the messages are destined for the Open XR module are received by the router, they

are handled by the Communication Agent Service running on the router. These messages are

forwarded to the data path entering the Open XR module via the module host electrical lanes

where they are recognized as management/control messages and handled appropriately.

 D4.1 GA Number 101016663

69

Figure 9-12 P2MP Control integration in B5G-OPEN

 D4.1 GA Number 101016663

70

10 TELEMETRY PLATFORM

Telemetry data is collected from observation points in the devices (measurements), as well

as events from applications/platforms (e.g., Software Defined Networking (SDN) controllers

and orchestrator) which are then sent and collected by a central system.

In the measurements, standards protocols devised for telemetry such as gRPC/gNMI

[GRPC22] are rapidly gaining attraction. Although such protocols can reduce the amount of

data, there are huge volumes of measurement data to be collected. Additionally, the

frequency of data collection leads to make those architectures not practical. In the case of

events, they should be transported and distributed to other systems.

In addition, many devices already deployed in transport networks still rely on

NETCONF/RESTCONF for their management and configuration. These protocols provide

notification mechanisms [RFC 5277], but they were not originally designed to provide a

constant flow of telemetry.

A telemetry “collector” or “mediator” agent may overcome this challenge and provide

mechanisms to obtain a stable stream of telemetry from legacy devices.

In B5G-OPEN, we have designed a telemetry architecture that supports both measurements

and events telemetry. For the former, intelligent data aggregation is placed nearby data

collection to reduce data volumes, whereas for event telemetry, data is transported

transparently.

10.1 B5G-OPEN TELEMETRY ARCHITECTURE
Figure 10-1 presents the network scenario, where the B5G-OPEN Control system is in charge

of several optical nodes: optical transponders (TP) and reconfigurable optical add-drop

multiplexers (ROADM). Note that the SDN architecture might include a hierarchy of

controllers, including optical line systems and parent SDN controllers (see Section 5) . A

centralized telemetry manager is in charge of receiving, processing, and storing telemetry

data, including measurements and events. The telemetry database (DB) includes two

repositories: i) the measurements DB is a time-series DB stores measurements, whereas the

ii) the event DB is a free-text search engine. In addition, telemetry data can be exported to

other external systems.

Some data exchange between the SDN control and the telemetry manager is needed, e.g.,

the telemetry manager needs to access the topology DB describing the optical network

topology, as well as the label switched path (LSP) DB describing the optical connections

(theses DBs are not shown in the figure). Every node in the data plane is locally managed by

a node agent, which translates the control messages received from the related SDN controller

into operations in the local node and exports telemetry data collected from observation

points (labelled M) enabled at the optical nodes. In addition, events can be collected from

applications and controllers (labelled E).

 D4.1 GA Number 101016663

71

Figure 10-1 Overall network architecture

A detailed architecture of the proposed telemetry system is presented in Figure 10.2 for the

case of measurements telemetry. The internal architecture of telemetry agents inside node

agents and the telemetry manager is shown. Internally, both, the telemetry agent and

manager are based on three main components: i) a manager module configuring and

supervising the operation of the rest of the modules; ii) a number of modules that include

algorithms (e.g., data processing, aggregation, etc.) and interfaces (e.g., gRPC); and iii) a Redis

DB that is used in publish-subscribe mode to communicate the different modules among

them. This solution provides an agile and reliable environment that simplifies

communication, as well as the integration of new modules. A gRPC interface is used by the

telemetry agents to export data to the telemetry manager, and by the telemetry manager to

tune the behaviour of the algorithms in the agents.

Let’s describe a typical measurements telemetry workflow valid for a variety of use cases.

The node agent includes modules (denoted as data sources) that gather measurements from

the observation points in the optical nodes. Examples include optical spectrum analysers

(OSA) in the ROADMs and data from digital signal processing, e.g., optical constellations, in

the TPs. A telemetry adaptor has been developed, so data sources can export collected data

to the telemetry system; specifically, the adaptor receives raw data from the data source and

generates a structured JSON object, which is then published in the local Redis DB (labelled 1

in Figure 10.2). The periodicity of the data collection can be configured within a defined range

of values. A number of algorithms can be subscribed to the collected measurements. In this

example, let us assume that only one algorithm is subscribed, which processes the

measurements locally. Such a processing might include doing: i) no transformation on the

data (null algorithm); ii) some sort of data aggregation, feature extraction or data

compression; or iii) some inference (e.g., for degradation detection). The output data

(transformed or not) are sent to a gRPC interface module through the Redis DB (not shown

in Figure 10-2) (2), which conveys the data to the telemetry manager. Since gRPC requires a

previous definition of the data to be carried, our implementation encodes the received data

in base64, which allows generalization of the telemetry data to be conveyed. Note that,

although such encoding could largely increase the volume of transported data, intelligent

data aggregation performed by telemetry agents could reduce such volume to a minimum.

 D4.1 GA Number 101016663

72

In the telemetry manager, the data are received by a gRPC interface module that publishes

them in the local Redis DB, so subscribed algorithms can receive them. The algorithms in the

telemetry manager can implement functions related to data aggregation, inference, etc.

Once processed, the output data is published in the local Redis DB (4) and can be stored in

the Measurements DB (5) and/or be exported to external systems (6). Interestingly,

algorithms in the telemetry manager can communicate with those in the telemetry agents

using the gRPC interface (7-8). Examples of such communication include parameter tuning,

among others.

Figure 10-2 Measurements telemetry architecture and workflow

Fig. 10.2. Measurements telemetry architecture and workflow

The architecture for the case of events telemetry is presented in Figure 10-3Events generated

in a SDN controller (or other system), are injected in the telemetry agent, and transported

transparently to the telemetry manager, which stores them in the Events DB and exports to

external systems. Note that Null Algorithms are used here just to propagate events, which

results in the same workflow as in the case of measurements, but no processing is performed.

Figure 10-3 Events telemetry architecture and workflow

 D4.1 GA Number 101016663

73

10.2 TELEMETRY DATA SOURCES

10.2.1 TAPI Optical Network Orchestrator / SDN controller

In this case, the objective is to use streaming (mechanism that handles the providing of data

from one system to another in some form of steady and continuous data flow) for the

reporting (notification) of ongoing change of state of the controlled system from one

Management-Control entity (TAPI Optical Network Orchestrator) to another (usually

superior) management-control entity. Since a significant part of the information is derived

from instrumentation the data flow is often called telemetry. A streaming approach is

defined that focuses on conveying TAPI entities, i.e., yang sub-trees and allow a client to

achieve and maintain eventual consistency with the state of the controlled system.

In this setting, an Event source/server streaming mechanism is made available as an

alternative to traditional notifications. The streaming capability is distinct from TAPI

Notification and is designed to better deal with scale and to provide an improved operational

approach. In this context, any component of the SDN control plane may act as a source of

streaming telemetry.

In particular, the TAPI Optical Network Orchestrator SDN controller will act as a data source.

For this, the internal architecture of the software will be modified to report asynchronous

events that happen in the network Macroscopically, the component will implement a REDIS

client following the B5G-OPEN network streaming telemetry architecture and will generate

asynchronous events related to topology and connection management. The events that will

be notified cover network events, related to:

- Topology (new link, new node, updated node edge point…)

- Connectivity (new service, new connection)

The encoding of such events follows TAPI streaming and Telemetry yang model. For example,

the next snippet shows a specific event:

{

 "metadata":{

 "measurement":"EventTelemetry",

 "index":"sdn_index"

 },

 "data":{

 "tapi-streaming:log-record":{

 "log-record-body":{

 "event-time-stamp":{

 "primary-time-stamp":"2022-11-02 11:05:25.080535465 UTC"

 },

 "link":{

 "cost-characteristic":[

 {

 "cost-name":"te-metric",

 "cost-value":"1.000000"

 }

],

 "direction":"UNIDIRECTIONAL",

 "layer-protocol-name":[

 "PHOTONIC_MEDIA"

],

 "node-edge-point":[

 D4.1 GA Number 101016663

74

 {

 "node-edge-point-uuid":"89937add-3380-58ab-94ff-9b2fb4efbeeb",

 "node-uuid":"589df6c1-90e1-51f5-bda4-b4cd6b2d01e4",

 "topology-uuid":"d8013ae5-12d1-54c0-b653-5d3b5080989f"

 }

],

 "uuid":"71505848-d2b3-57dd-8069-295ce111ec61"

 },

 "record-content":"LINK"

 },

 "log-record-header":{

 "entity-key":"71505848-d2b3-57dd-8069-295ce111ec61",

 "log-append-time-stamp":"2022-11-02 11:05:25.080519123 UTC",

 "record-type":"RECORD_TYPE_CREATE_UPDATE",

 "tapi-context":"1d2ba340-41c3-53a9-a615-88380211e6fc",

 "token":"0"

 }

 }

 }

}

10.2.2 LiFi Access Points

The LiFi telemetry data will be collected by LiFi access points as illustrated in Figure 11.5-. On

the physical layer, the LiFi AP contains photodiode receivers which could capture the uplink

optical signals and convert them into electrical signals. Such signals contain information of

the link quality and network performance which are the key telemetry data of interest. This

information such as received signal strength (RSS) and achieved throughput, can be collected

periodically whenever a user is connected. To accommodate with the telemetry manager, a

telemetry adaptor will be implemented within the LiFi AP to send telemetry data to the

telemetry manager.

Fig. 11.5 LiFi Telemetry.

10.2.3 Data Collection

“Flex-Telemetry” (see Figure 10-4) is a program that performs periodically requests to collect

performance measurements from ADVA devices, using NETCONF and a combination of open

(OpenConfig) and proprietary data models. Meanwhile, a modular plugin system provides a

NBI interface capable of providing a stable source of stream telemetry to different mediums,

such as time-series and in-memory DBs, International Data Spaces (IDS)

 D4.1 GA Number 101016663

75

Figure 10-4 ADVA Flex-Telemetry agent

10.2.4 Spectrum monitoring

The Nokia Optical Network testbed combine more than 400 km optical fibre with 7 Nodes

(Figure 10-5). Hardware come from 3 different vendors and also integrates offline lab

measurement. We have a fully characterized component: fibre length, loss and chromatic

dispersion; ROADM losses. Transponder consists in 12 commercial elastic TRX Line and offline

TRX. Other channels based on ASE noise are available to load the testbed. The testbed is

continuously monitored by our agent.

Figure 10-5 Nokia Optical Network testbed

We plan to integrate the spectrum monitoring at each node ingress and egress port to the

telemetry system by implementing a telemetry adaptor. The message will be sent to REDIS

instance via JSON with the following structure:

{
freq : [<array of frequency value in MHz>]

 D4.1 GA Number 101016663

76

power_x : [<array of power value in mB>],
power_y : [<array of power value in mB>],
channel: [<array of [<central channel frequency MHz>,< channel width in MHz

>]>]
location:<string containing location identifier>
}

10.3 PACKET FLOW MONITORING USING HASHING TECHNIQUES
Monitoring packet streams at line rates equal or above 100 Gb/s is extremely challenging.

Sampling techniques are not recommended since a large number of packet flows (above

40%) contain only one packet [Jurkiewicz20]. Also, inspecting all packets and storing all

packet headers do not scale as well since FlowIDs require 104 bits in IPv4 or 288 bits in IPv6.

For this reason, monitoring streams of packets have to be done using hash-based techniques

on all the packets.

There exist different probabilistic data structures that provide accurate summaries (not

exact) efficiently in terms of time and memory requirements; these can be used to query

streams of packets, for example:

- To test if a packet belongs to a group of flows or not, for instance, a black list (using

Bloom Filters)

- To obtain cardinality of flows, i.e., how many different flows are traversing the port

(using HyperLogLog algorithm)

- To identify the top-K heaviest flows/heaters, i.e., top 10 heavy-hitters or top-20, etc

(using Count-Min Sketch)

These summaries allow to perform specific operations on all flows at the data plane (in a

programmable data plane like P4) with reduced memory requirements. Packet-

optical boxes will include a telemetry agent which will coordinate with a packet-based

telemetry management system for the setup, configuration and retrieving of flow-monitoring

information, by means of BF, HLL and CMS data structures. These structures, implmented in

the P4 pipeline of the packet-optical boxes will be available through gRPC to the telemetry

manager.

10.3.1 Bloom Filters

Bloom Filters allow to check whether a FlowID belongs to a list or not [Bloom70]. A Bloom

Filter is an array of M bits initially set to zero. Adding an element to the BF set requires to

hash the element using K hash functions and setting the resulting bits to one in the BF. This

operation of adding (i.e. setting the results of the K hash functions to one) is repeated for

every element in a list S (I.e. S={x,y,z}). BF may have false positives (never false negatives) if,

by chance, all k hash functions of w point to bits set to 1 by other elements.

Next, when a packet w arrives at the port, the way to check whether it belongs to the set S

stored in the BF is by taking the K hash functions on w and see which bits they point in the

BF structure.

- If hk(w)=1 for all k hash functions, then YES

- If hk(w)=0 for some k hash functions, then NO

In general, using 15-20 bits per flow lead to compact BF structures with reduced false positive

rates and feasible implementations on P4.

 D4.1 GA Number 101016663

77

10.3.2 HyperLogLog

HyperLogLog (HLL) allows to estimate the cardinality of a set, that is, the number of different

flow IDs traversing a given port [Flajolet07]. In HLL, only one hash function (e.g., murmur32)

is needed to be performed to every packet traversing the port. The hash function produces

a result with n bits; of these n bits, the first b bits identify a register (there are m = 2b

registers), while the remaining bits are processed in the following way: the number of

consecutive zeroes is inspected from bit b+1 onwards. The result is stored in the register

pointed by the first b bits, only if the number of consecutive zeroes is larger than the existing

value already stored in the register.

In general, using 32-64 registers with 16 bits per register allow to obtain accurate estimates

of flow cardinality with compact memory use (about 1 Kbit).

10.3.3 Count-Min Sketch

The Count-Min Sketch (CMS) is a data-structure that allows to store the frequencies of each

flowID in a compact manner [Cormode09]. It is very similar to having multiple Counting

Bloom Filters. The challenge is again to store the frequencies of flows (especially the heavy

hitters) where most of them are unique (around 60% of the flows only have one or two

packets).

To do this, the CMS comprises a matrix with d rows (one per hash function) and w columns.

When an element arrives, we compute all d hash functions (one per row) and increase by

one each position in the appropriate column. Of course, there will be collisions in some

positions of the structure. However, taking the minimum value of the d positions will reduce

the probability of overestimating the flow.

After all elements are introduced in the CMS, we can query it to get an approximate of

frequency for a particular element. This is performed by inspecting all the counters pointed

by the hash functions of the flowID and taking the minimum value. In general, with some

tens of Kbit of memory, we can accurately estimate cardinalities in the order of thousands of

flows.

 D4.1 GA Number 101016663

78

11 AUTONOMOUS NETWORKING AND QUALITY ASSURANCE

The monitoring and performance telemetry system developed in this consortium will enable

to close a control loop and envisage autonomous network operations.

11.1 AUTONOMOUS NETWORKING
Optical Autonomous networks are based on several building blocks addressed in this project:

physical impairment modelling and performance monitoring, telemetry systems and a

control and orchestration. Since the two last decade, the introduction of the digital signal

processing at the transponder level leads to low cost and massive monitoring of the physical

layer while the software defined network paradigm takes advantage of the NE

programmability through standardized interface (via the OpenAgent) to exploit dynamic

reconfiguration towards automation.

From these building blocks, we envisage three main architectures to define the control loop:

- a local control loop: This scenario is leveraging some limited intelligence at the node

level. The main objective is the live optimization of a reduced set of parameters on a

lightpath. One can cite the work already achieve by the members of the consortium

on frequency optimization to mitigate the filtering penalties [Del19a], power

optimization to mitigate transient loss [Gou21] hitless baudrate switching [Dut22].

Additionally, the recent introduction of the P2PT [Pao22] also enables the feedback

and the decision of a transponder or a node locally and will be considered as a local

control loop even if the Central Telemetry Manager can be a client -a consumer- of

the P2PT.

- A domain control loop: This scenario is the most common and is leveraging

intelligence in a centralized architecture. A wide-ranging set of applications for

closed loop reconfigurations can be deployed and are triggered in response to events

identified in the central Telemetry Manager. Such an architecture, while not giving

the best performance in term of reaction speed, will certainly provide the best

overall decision [Del19b].

- A multi-domain control loop: This scenario is probably the most challenging as the

parameters from one domain are not opened to the other domain and there is a

need to rely on the previously explained knowledge sharing. It is also a centralized

architecture empowered by AI/ML to have autonomous networking coordinated

across domains without exchanging internal domain details.

 D4.1 GA Number 101016663

79

Figure 11-1 Intra domain Control loop architecture

11.2 SINGLE-DOMAIN AND MULTI-DOMAIN QUALITY ASSURANCE
Quality assurance is based on Intent Based Networking (IBN) [IBN] applications to represent

the optical transport network (Figure 11-2). In this section, we rely on a deep learning-based

IBN application for the optical time domain, named OCATA [OCATA], which initial concept

has been developed in B5G-OPEN. OCATA is based on the concatenation of deep neural

networks (DNN) modelling optical links and nodes, which facilitates representing lightpaths.

The DNNs can model linear and nonlinear noise, as well as optical filtering. Additional DNN-

based models are proposed to extract useful lightpath metrics, such as lightpath length,

number of optical links and nonlinear fibre parameters.

OCATA includes a sandbox domain to pre-train DNN models, based on the measurements

available through telemetry (labelled 1 and 2 Figure 11-2). Such models are made available

to IBN applications (3), which use them to generate expected signals that can be compared

with those obtained from the network (4). In that way, deviations between the observed and

the expected signals can be detected and used for, e.g., soft-failure detection, identification,

and localization.

 D4.1 GA Number 101016663

80

Figure 11-2 Intent-based networking in the intra-domain

Because telemetry and DNN models are domain internal, knowledge sharing is proposed for

the IBN applications to solve the problem of inter-domain scenarios (Figure 11-3). IBN

applications exchange their internal models for the segment of the optical lightpath in their

domain. By working on DNNs’ internal architecture to ensure not disclosing internal domain

details, such models can be shared among different domains to create end-to-end lightpaths’

models. Armed with such end-to-end lightpaths’ models, domain IBN applications can carry

out diagnosis and collaborate to localize failures.

Figure 11-3 Intent-based networking in multi-domain scenarios

 D4.1 GA Number 101016663

81

12 INITIAL CONSIDERATIONS ON INTERFACES AND PROTOCOLS

This section provides an overview of the main interfaces and protocols that are considered

for the interactions between B5G-OPEN control plane components and towards external

systems (such as Operational Support Systems) and Network devices (including the

prototypes developed by WP3).

12.1 OPENCONFIG FOR PACKET AND OPTICAL
The OpenConfig project [OpenConfig] is a collaborative effort by network operators to

develop programmatic interfaces and tools for managing networks in a dynamic, vendor-

neutral way. Thus, its models are periodically updated. All OpenConfig models are available

on github [OpenConfig]. The OpenConfig information model is composed by a set of abstract

modules. Each one is composed by a set of YANG models and represents a specific capability

and features of a network device, such as HW components hierarchy, interfaces, OSPF

configuration, QoS, among others.

The main modules used for Packet and Optical SDN operations are the following:

Platform:

• Platform - openconfig-platform.yang – It constitutes the main model to

define the hardware components of a network device.

• CPU - openconfig-platform-cpu.yang – It augments the platform model to

add specific parameters of a CPU component.

• FAN - openconfig-platform-fan.yang – It augments the platform model to add

specific parameters of a FAN component.

• LINECARD - openconfig-platform-linecard.yang – It augments the platform

model to add specific parameters of a Linecard component.

• PORT - openconfig-platform-port.yang – It augments the platform model to

add specific parameters of a port component.

• PSU - openconfig-platform-psu.yang – It augments the platform model to

add specific parameters of a PSU (Power Suply Unit) component.

• TRANSCEIVER - openconfig-platform-transceiver.yang – It augments the

platform model to add specific parameters of a Transceiver component.

• Platform Types - openconfig-platform-types.yang – It defines the types used

to define the parameters in the platform module parameters

Optical-Transport:

• Terminal Device - openconfig-terminal-device.yang – It defines the main model to

define a terminal optics device.

• Optical Transport Types - openconfig-transport-types.yang – It defines the types

used to define the parameters in the optical transport module parameters.

Terminal device manifest

Openconfig has defined the manifest files, a special type of model which is not configuration

nor operation. A remote controller requires some data from the transceiver in order to

perform optical planning and impairment validation of the end-to-end transmission across

an Optical Line System (OLS). When a pluggable module is recognized by a terminal device

 D4.1 GA Number 101016663

82

(which can be a transponder or a packet-optical box), the operational mode datastore is

updated.

• operational-mode-capabilities this set of attributes contains all characteristic

information of the signal (modulation format, FEC, bit rate...), relevant information

for the physical impairment validation (OSNR Rx sensitivity, CD/PMD tolerance and

penalties).

• optical-channel-config-value-constrains: Contains the transmission configuration

constrains/ranges of the optical-channel's attributes characterized by the

operational-mode, i.e., the central frequency range, the frequency grid and the

configurable transmitted power.

Figure 12-1 Hierarchy of components of an open terminal device

The main modules that are required for packet (IP/MPLS) control are:

bgp: This set of modules describe the BGP protocol configuration. They are used in the service

related use cases to handle the BGP protocol and to support IP Connetivity.

interfaces: Model for managing network interfaces and subinterfaces. For the use cases that

are currently defined is used to configure the line side interfaces after setting up the optical

connectivity.

local-routing: This module describes configuration and operational state data for routes that

are locally generated, i.e., not created by dynamic routing protocols. It can be used with

network-instances to configure the static routes.

network-instance: The network instance is an abstraction of a packet fowardign device. It

may be a Layer 3 forwarding construct such as a virtual routing and forwarding (VRF) instance

or the Global routing instance. A Layer 2 instance such as a virtual switch instance (VSI) and

Mixed Layer 2 and Layer 3 instances are also supported. The network instance works in

conjunction with other modules such as:

o Interfaces

 D4.1 GA Number 101016663

83

o VLANs

o Potocols

12.2 P4 AND P4 RUNTIME

Figure 12-2 P4 development workflow [https://p4.org/]

Programming Protocol-independent Packet Processors (P4) is a domain-specific language for

network devices that defines how data plane devices (switches, NICs, routers, filters, etc.)

process packets. P4 [P4] is an open-source project whose goal is to develop and define the

tools needed to work with P4 (e.g., specifications, compiler, interfaces, etc.) in order to

enable next-generation SDN. The tools/applications developed in the project are maintained

in [P4lang] GitHub repository. Figure 12-2 shows the P4 development workflow required to

program and install a P4 pipeline and control it via an SDN controller. More in detail, a P4

program allows to implement a custom pipeline supporting: configurable match-action

tables and packet headers, metadata extraction, programmable actions, and stateful data

structures. The P4 compiler generates an executable file for the target data plane and the

runtime mapping metadata to allow the communication among control and data planes. The

P4Runtime API is an RPC interface used by the control plane for managing a P4 device where

a custom pipeline is installed. After a detailed analysis, P4 language and P4Runtime perfectly

fit the requirements for managing and control the packet optical node in the BG5-OPEN

project. Indeed, the possibility to perform in-network operations opens the way to new

applications and functionalities to be operated at wire-speed. The B5G-OPEN deliverable

D3.1 reports an example of optical monitoring parameters included within telemetry packets

that are processed by the P4 ASIC for fast recovery.

 D4.1 GA Number 101016663

84

12.3 TRANSPORT API (TAPI)
The TAPI Optical Network Orchestrator, as an SDN controller, provides Network Topology

and Connectivity Request services to a parent SDN Controller or another T-API-able user. It

is mainly responsible for the offering of DSR connectivity services between optical

transponders that are connected to the ROADMs. The transport protocol used for all

operations on the NBI is RESTCONF [RFC8040]. It is an HTTP-based protocol that provides a

programmatic interface for accessing data defined in YANG, which is the language T-API is

defined in. The key YANG models composing the T-API information models are to be based

either in the current version 2.1.3 [TR-547] or in the upcoming TAPI 2.4 [TAPI2.4], including

the following modules

- tapi-common.yang ,

- tapi-connectivity.yang ,

- tapi-dsr.yang

- tapi-topology.yang

- tapi-connectivity.yang

- tapi-path-computation.yang

12.3.1 Generic Aspects

T-API is based on a context relationship between a server and a client. A Context is an

abstraction that allows for logical isolation and grouping of network resource abstractions

for specific purposes/applications and/or information exchange with its users/clients over an

interface. It is understood that the APIs are executed within a shared Context between the

API provider and its client application.

A shared Context models everything that exists in an API provider to support a given API

client. The T-API server tapi-common:context includes the following information: The set of

Service Interface Points (SIP) exposed to the TAPI client applications representing the

available customer-facing access points for requesting network services.

This set must allow Connectivity Service (CS) creation at the DSR Layer, a topology-context

which includes one or more top-level Topology objects which are dynamic representations

of the network, and connectivity-context which includes the list of Connectivity-Service and

Connection objects created within the TAPI Context.

Adopting TAPI allows a standard and mature way to interact with SDN controllers for optical

networks, as specified in OOPT MUST [MUST]. In particular, the figure below (Figure 12-3)

shows a common representation of an optical network using TAPI terminology and

convention.

 D4.1 GA Number 101016663

85

Figure 12-3 TAPI representation of a digital service between pluggables across an optical network

12.4 PATH COMPUTATION
B5G OPEN will adopt the TAPI (Transport API) architecture [TR-547], and as such, the OPCE

element is a module that can assist the TAPI Optical Network Orchestrator for computing the

optical path e.g., in the provisioning process. More than one OPCE implementations can be

used, by different partners, e.g., implementations included inside the B5G-ONP, or external

to it, with different capabilities.

The interaction between the OPCE and the TAPI Optical Network Orchestrator will be

engineered according to the TAPI standards (TAPI version 2) in section 12.3. Figure 12-4

shows an exemplified sequence of messages in a typical interaction.

Figure 12-4 Exemplified TAPI Optical Network Orchestrator -.OPCE interaction.

The project may require extensions of these interactions for accommodating two key novel

aspects:

OTS_MEDIA

OTS_MEDIA

OMS

OMS

MC

MC

OTSiMC

OTSiMC
(+OTSi PAC) MC Top Connection (a/d to a/d port)

OTSiMC Top Connection (line to line port)

OMS
Top Connection with Pools

OTS_MEDIA
Top Connection

(deg to amp port)

OTS_MEDIA
Top Connection

(amp to deg port)

OTS_MEDIA
Top Connection
(a/d to line port)

OTS_MEDIA
Top Connection
(line to a/d port)

 D4.1 GA Number 101016663

86

• Multiband operation

• Optical impairment computations in this context.

The details of such variations are being discussed along the WP3/WP4 activities in the

project, and will be reported in the appropriate deliverables. Additionally, they will be

contributed to the optical scientific community and standards as one of the project

outcomes.

12.5 ONOS NATIVE
The ONOS controller includes a wide set of northbound REST APIs providing

GET/POST/DELETE methods towards the network [ONOSREST]. For example, GET methods

can be used to retrieve information about the network topology or about the current

configuration of ONOS applications (NetApps) running on the controller. Similarly, POST and

DELETE methods can be used to interact with the network devices and the network

applications, e.g., sending new configuration to the network devices or modifying actual

values of NetApps parameters.

These interfaces will be used to integrate the optical controller within the B5G-OPEN control

plane, specifically the interfaces will be consumed by the Orchestrator and the TAPI tools.

Current implementation of such interfaces is not complete for the B5G-OPEN purposes,

especially interfaces should be extended for enabling retrieval of optical resource utilization

(e.g., supported and available frequency slots) and optical physical parameters to be used by

upper control plane components. Such APIs will be therefore extended during the project to

provide all data required by the upper B5G-OPEN components.

12.6 OPENROADM
[OpenROADM] is a Multi-Source Agreement initiative, active since 2015 and comprising

several network operators and optical system and component vendors. From the control

plane perspective, OpenROADM defines data models for device, network, and service

modelling, targeting the fully disaggregated network model. The device model covers

detailed configuration information, alarm, and performance monitoring and, as such, was

chosen by the METRO-HAUL project as the reference interface for ROADM devices. Recently,

device models have been extended opening to the “partial disaggregated” solution covering

also trans-, mux- and switch-ponders.

The METRO-HAUL project developed an OpenROADM driver for the ONOS SDN controller to

control ROADM devices. The driver is currently downloadable from the official ONOS

repository and available under the ODTN-driver section [ONOS]. During device discovery,

ONOS retrieves the number and type of ports together with their capabilities to feed its

internal device database. More specifically, the current driver collects the spectral feature of

the ports reading the <mc-capabilities> branch from the device datastore, available both for

degrees and Shared Risk Group (SRG, i.e., add/drop modules). However, with such spectral

information is possible to model only single band devices. Recent updates of the device

model (starting from v.7.0.0) address multi-band devices by a new top-level branch named

<mc-capabilities-profile>, very similar to the old <mc-capability> but that can be instantiated

several times to describe the different bands and can be referenced by ports, degree and

SRG, as can be seen in the following tree, extracted from the OpenROADM device model.

 D4.1 GA Number 101016663

87

+--rw circuit-packs* [circuit-pack-name]

| +--rw circuit-pack-type

| +--

....

| +--rw ports* [port-name]
| +--rw port-name
| +--
| +--ro mc-capability-profile-name*
....
+--rw degree* [degree-number]
| +--rw degree-number
| +--
| +--ro mc-capability-profile-name*
....
+--rw shared-risk-group* [srg-number]
| +--rw srg-number
| +--
| +--ro mc-capability-profile-name*

....

+--ro mc-capability-profile* [profile-name]

 | +--ro profile-name

 | +--ro center-freq-granularity?

 | +--ro min-edge-freq?

 | +--ro max-edge-freq?

 | +--ro slot-width-granularity?

 | +--ro min-slots?

 | +--ro max-slots?

Figure 12-5 Extract of OpenROADM tree for multiband support

On the other hand, the device model covers only the case of point-to-point connections.

Coverage for point-to-multipoint optical connections, as those needed by XR-optics, is not

yet in the scope of the MSA. Currently, the <roadm-connection> container allows creation of

both express and add-drop connections uniquely between one source and one destination

Network Media Channel (NMC) interface. Even if nothing prevents, from a generic

perspective, to have more than one roadm-connection referencing the same NMC, this is not

a shared solution and may create interoperability issues.

12.7 INTERFACES FOR THE TELEMETRY PLATFORM
We rely on Redis as a demarcation point between data sources and the telemetry system.

Telemetry data generated by data sources are encapsulated as JSON objects and published

in a Redis database. In particular, the RedisJSON module that provides JSON support for Redis

is used. RedisJSON lets store, update, and retrieve JSON values in a Redis database, similar

to any other Redis data type. The publish/subscribe paradigm is used to decouple data

sources (publishers) from subscribers aimed at reaching good scalability and achieving

dynamic messaging routing.

A gRPC interface is used to transport telemetry data, both measurements and events,

between telemetry agents and the telemetry manager. GRPC uses Protocol Buffers as the

interface description language to serialize structured data. Protocol buffers have a strict

specification, which needs to be defined for every type of data being transported. Then, to

avoid the proliferation of protocol buffers schema, a single one is defined that encoded in

base64 JSON objects encapsulating whatever telemetry data to be transported. Note that

B5G-OPEN relies on intelligent data aggregation techniques to reduce the amount of

telemetry data that is actually conveyed to the centralized telemetry manager. Therefore,

even though gRPC potentials are not fully exploited in this approach, preliminary results show

no significant increment of data being transported.

 D4.1 GA Number 101016663

88

12.8 CONTROL OF PLUGGABLE MODULES

12.8.1 Coherent pluggable modules

Common Management Interface Specification (CMIS)[CMIS], defines a generic management

communication interface and protocol among the host (e.g., network switch) and modules

(e.g., optical transceivers). This interface has been defined in order to provide a standard

across a variety of module capabilities and form factors (QSFP-DD, OSFP, COBO) to foster the

vendor agnostic management. The Coherent CMIS (C-CMIS) extends the CMIS interface to

handle coherent optics pluggables, e.g., 400ZR modules, that require additional calls to

perform interface-related data processing, such as Forward Error Correction (FEC). The CMIS

and C-CMIS specifications are defined within the Optical Internetworking Forum (OIF)[OIF]

thanks to the joint collaboration of network devices vendors. These standards fulfil the needs

of B5G-OPEN project for managing ZR and OpenXr pluggable modules within a packet-optical

node.

12.8.2 PON pluggable modules

The integration of the PON access networks (e.g., PON pluggables) with the B5G-OPEN

software platform can be realized in three different levels (from higher to lower layers):

a) B5G-OPEN integration with PON Manager;

b) B5G-OPEN integration with PON Controller;

c) Direct communication using OLT PON SDK or CLI.

The aforementioned options generate a set of four architectural alternatives for the PON

control and therefore for the actual integration with the B5G-OPEN platform, which are

described in detail in Section 8.1.

The third alternative (direct communication with the pluggables through the B5G-ONP app)

seems more straightforward and seems to be the dominant option at the time of the writing

of this deliverable.

12.9 LIFI INTEGRATION
The LiFi AP architecture has been described and shown in Figure 7-5. The interface for the

LiFi integration would be via Ethernet ports. The support for NETCONF will be provided as

well as a YANG model for LiFi. A basic model example for LiFi has been implemented as shown

in Figure 12-6. It will also be further considered using Openconfig.

Figure 12-6: Basic model for LiFi

 D4.1 GA Number 101016663

89

It will be enhanced for more control operations such as:

• Enable lifictl operations from Netconf i.e., add options in the model to set lamp

power, set brightness, display help message, etc.

• Enable system reboot from Yang model

• Add DHCP IP configuration option

12.10 B5G-OPEN SLICING NORTH BOUND INTERFACE
The B5G-OPEN project will provide ad-hoc developed APIs using REST/APIs paradigm,

following best practices (e.g., Open-API documentation), as the northest API of the

ecosystem. The target user of these APIs in an industrial deployment would be e.g., the

operators OSS systems, or directly operator personnel in charge on provisioning of the

different services.

These APIs are designed to provide an open and programmatic access to the different use

cases to be demonstrated. The details of these APIs will be defined later in the project,

appropriately reported.

General policies have been already defined for those APIs:

• REST-based APIs, exposed via open documentation frameworks, preferably OpenAPI.

o Making use of the IETF YANG model for Network Slices [NSv16].

• Adoption of the Optimization-as-a-Service (OaaS) paradigm [Gar19][Pav15]:

o This relies in the concept of algorithm repository, as a set of algorithms

exposed, browsable in a catalogue, and runnable via the open APIs. A subset

of the algorithms developed along B5G-OPEN will be integrated using this

form.

o Utilization of container models for shipping the algorithm implementations.

This means that the different algorithms will be packaged into separated

containers, that can be ran independently in the B5G-ONP system. This is an

enabler for integrating algorithms developed in different languages and

platforms (a practical aspect, that becomes actually a booster for the OaaS

concept), and possibly by third parties, into the B5G-ONP system.

12.11 KUBERNETES
The integration of the Kubernetes cluster with the B5G-OPEN software platform will be

realised through the APIs [K8sAPI] exposed by the Kubernetes API Server (kube-apiserver)

deployed in the Kubernetes master. An API client to be deployed in the B5G-ONP app will be

used in order to instantiate/delete new services, to retrieve basic resource related statistics

and to influence the placement decisions.

A preliminary implementation of the B5G-ONP interaction with a set of (two) K8S clusters is

already in place in ELIG facilities. This is being used to prototype the APIs that interact with

the K8s for the following use cases, at this moment:

 D4.1 GA Number 101016663

90

• Registration of new K8s clusters in the B5G-OPEN system. By doing that, the clusters

are eligible for dimensioning/provisioning use cases.

• Retrieval of macroscopic occupation information on registered clusters.

It is expected that along year two, the bulk of the control related use cases are also

prototyped and demonstrated.

12.12 OPEN XR CONTROL INTERFACE
The integration of OpenXR IPM with B5G-OPEN system will be realized on an Open XR

NBI. This interface enables:

• Retrieval of module inventory information: part numbers, serial numbers, line and
client interfaces;

• Monitoring of fault conditions of the module resources: fault management, following
RFC-8632;

• Module software management: inventory and upgrade of SW versions;

• Hub-Spoke topology management: discovery and configuration of optical P2MP
network topologies;

• Line side transport capacity management: discovery and configuration of digital sub
carriers into transport capacities;

• Client service management: discovery and configuration of client mapping to
transport capacities;

• VTI (L2) service management: configuration of VLAN based end to end services.
Symmetric or asymmetric traffic with dedicated or shared downlink transport
capacity.

A first integration will make use of an OpenXR REST API. Openconfig shall later be extended

to allow control of the novelties introduced by XR Optics allowing the integration to be done

via Openconfig.

 D4.1 GA Number 101016663

91

13 CONCLUSIONS AND NEXT STEPS

This deliverable has presented the set of requirements, use cases and initial architecture

proposal for the B5G-OPEN control plane. The set of requirements include the discovery of

the existing resources and topology, planning of the network resources and advanced use

cases to support fault management, along with use cases for autonomous network

operations are also described. Control-plane services, including point-to-point optical

connectivity, point-to-multipoint XR connectivity, IP link provisioning, B5G-OPEN Slice and

telemetry services, are also described in the document.

The state of art in existing frameworks has been surveyed and presented in Section 4,

covering SDN controllers, Node Operating Systems, Telemetry tools and Network planning

frameworks. The decisions to build every prototype component of the B5G-OPEN

architecture is based on the outcome of the survey. The maturity and availability of open-

source code is the main driver to select the framework to build upon.

Regarding the B5G-OPEN control plane architecture, this is described in Figure 5-1 showing

a number of components that will trigger innovations in the following aspects of the control

plane:

- Systems and devices to enable multi-band optical transmission, and their

appropriate control, including the control of emerging pluggable interfaces together

with existing transmission systems.

- Control tools for setting up multi-domain connections traversing different network

segments, including the modelling of physical layer impairments in MB capable

networks.

- Planning tools able to understand the packet-optical multi-band network as a whole,

including access together with optical and packet layers.

- Telemetry modules for the collection of network state and continuous monitoring of

both optical and packet parameters.

- Intent Based Networking, network automation and the design of AI/ML algorithms

that enable network self-management and operations based on telemetry

information and past historical data.

Sections 6 through 11 have gone in detail in the internal architecture of the components of

each architectural Block. In the detailed architecture, the frameworks that have already been

selected have been added in the required architectural component, for example SONIC as

Node Operating System for packet/optical boxes or ONOS as Optical SDN Controller. It is

relevant to highlight that B5G-OPEN architecture is generic and defines Open interfaces

among the components.

In terms of Control Plane architecture definition, the work for the second year will be focused

on extending the work to multi-controller / segments in a domain-less manner. B5G-OPEN

envisions that the delivered services are not constrained to source/destination being in the

same segment.

 D4.1 GA Number 101016663

92

During the first year of the project, a set of interfaces, summarized in Section 12, has been

identified to fulfil the control plane requirements for packet, optical and access technologies,

as well as communication within B5G-OPEN components and towards external

users/applications. The plan for the second year of the project is to specify in detail those

interfaces. When required, the available standards/ APIs will be extended and the new

specification will be taken back to the relevant body, with the collaboration of WP6. For

example, WP4 members are active contributors to Transport API, Openconfig, OpenRoadm

or OpenXR, among others. The selected interfaces will be implemented in the foreseen B5G-

OPEN Prototypes developed in WP4.

The second year of the project will be focused, in addition, to completing the interface

specification, on prototyping the identified WP4 components. These prototypes of software

components in development by WP4 will be ready to be used in WP5 demonstrations and

will control selected WP3 hardware. It is expected that WP3 will provide the final

specification of devices and interfaces and final version of the physical layer impairment

validation model to be used in the path computation function.

In terms of detailed prototyping activities, the following work is expected for Y2:

• Implementation of different B5G-ONP modules, starting with a first prototype of the

interface with i) the TAPI Orchestrator and ii) the K8S clusters, according to the

guidelines stated in this deliverable.

• Implementation of an interface between a SONIC whitebox and the B5G-ONP in

different control use cases.

• Implementation and enhancement for the LiFi YANG model. Meanwhile, the

telemetry adaptor is under development for LiFi access which delivers LiFi telemetry

data that has been defined.

• Design and implementation of the TAPI enabled Network Orchestrator, which will

interact with the B5G-ONP path computation module and with the optical controller.

• Implementation of network streaming module, by which the TAPI orchestrator shall

be able to report the status of the network following the B5G-OPEN telemetry

architecture as presented in this document.

• Extending and testing of the SONiC NOS to enable the control of coherent pluggables

and implement the interfaces toward other B5G control plane blocks. In particular, a

demonstration for OFC 2023 (accepted) is in preparation implementing the SONiC

box interface toward the B5G-ONP. Moreover, the SONiC box interface toward the

ONOS optical controller is in phase of development and will be tested during Y2.

• Deployment and testing the ONOS optical controller. After the first development,

during Y2 several developments are needed in ONOS: support of multi-band; support

of multi-domain intents; interfaces toward T-API proxy on north-bound; drivers on

south-bound toward packet-optical nodes, OpenROADM devices, OpenConfig

devices, T-API OLSs, other devices; retrievment of physical impairments from devices

and OLSs.

• Integration of data sources from devices and controllers provided by several

partners into the telemetry system and preparing a demonstration for OFC 2023.

Intelligent data aggregation algorithms will be developed to process telemetry data

distributely.

• Regarding IBN, development of strategies for sharing models between network

domains, so as to allow end-to-end modelling.

 D4.1 GA Number 101016663

93

• Integration and demonstrate the Flex-Telemetry agent in the B5G-OPEN telemetry

framework.

• Extension and integration of the OLS control for the control and monitoring of multi-

band amplifiers. A current topic is to evaluate the upgrade of the B6G-OPEN Optical

Controller and OLS Controller to the recently released TAPI 2.4.0.

• Implementation of packet flow monitoring based on hashing techniques using P4.

The monitoring algorithms will be evaluated both in simulation environments, along

with a proof-of-concept testbed based on P4 whitebox.

• Integration of the P2MP transceivers with the OpenXR REST API. Openconfig shall

later be extended to allow control of the novelties introduced by XR Optics allowing

the integration to be done via Openconfig.

 D4.1 GA Number 101016663

94

14 REFERENCES

[5GCH] 5G-Crosshaul: The 5G Integrated fronthaul/backhaul | 5G-Crosshaul Project | Grant agreement ID:

671598 | European Commission. Retrieved October 5, 2022, from

https://cordis.europa.eu/project/id/671598

[BBF-GIT1] Broadband Forum YANG models on GitHub: https://github.com/BroadbandForum/yang

[BBF-TR385] Broadband Forum TR-385, "ITU-T PON YANG Modules", October 2020

[Blo70] B. H. Bloom, "Space/Time Trade-offs in Hash Coding with Allowable Errors", Communications of

the ACM, 13 (7): 422–426, 1970

[Chi17] A. Chifor [Online]. Retrieved October 5, 2022. “Container Orchestration with Kubernetes: An

Overview”. https://medium.com/onfido-tech/container-orchestration-with-kubernetes-an-

overview-da1d39ff2f91

[CMIS] “CMIS” [Online]. Retrieved April 27, 2022, https://www.oiforum.com/wp-content/uploads/OIF-

CMIS-05.2.pdf

[Cor09] G. Cormode, "Count-min sketch" (PDF). Encyclopedia of Database Systems. Springer. pp. 511–516,

2009

[Del19a] C. Delezoide et al., "Automated Alignment Between Channel and Filter Cascade," in Optical Fiber

Communication Conference (OFC) 2019, OSA Technical Digest (Optical Society of America, 2019),

paper Th2A.48.

[Del19b] C. Delezoide et al., “Marginless Operation of Optical Networks,” J. Lightwave Technol. 37, 1698-

1705 (2019)

[Dut22] Eric Dutisseuil, Arnaud Dupas, Alexandre Gouin, Fabien Boitier, Patricia Layec, "Hitless

Transmission Baud Rate Switching in a Real-Time Transponder Assisted by an Auto-Negotiation

Protocol," OFC 2022

[ELASTICSEAR

CH]

[Online] https://www.elastic.co/es/

[ETSI19] ETSI. GR NFV-IFA 029 - V3.3.1 - Network Functions Virtualisation (NFV) Release 3; Architecture;

Report on the Enhancements of the NFV architecture towards “Cloud-native” and “PaaS.”, 2019

https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx

[Fer20b] A. Ferrari et al., “GNPy: an open source application for physical layer aware open optical networks”.

Journal of Optical Communications and Networking, Vol. 12, Issue 6, 2020, Pp. C31-C40, 12(6), C31–

C40. https://doi.org/10.1364/JOCN.382906

[Fla07] P. Flajolet et al, "Hyperloglog: The analysis of a near-optimal cardinality estimation algorithm",

Discrete Mathematics and Theoretical Computer Science Proceedings, pp. 137–156, 2007

[Gar19] M. Garrich, C. S. N. Martinez, F. J. M. Muro, M. V. B. Delgado, and P. P. Marino, “Network

Optimization as a Service with Net2Plan,” 2019 European Conference on Networks and

Communications, EuCNC 2019, pp. 443–447, Jun. 2019, doi:

10.1109/EUCNC.2019.8802041.

 D4.1 GA Number 101016663

95

[Gar20] M. Garrich et al., “IT and Multi-layer Online Resource Allocation and Offline Planning in

Metropolitan Networks”. Journal of Lightwave Technology, 38(12), 2020, pp. 3190–3199.

https://doi.org/10.1109/JLT.2020.2990066

[Gio20] A. Giorgetti et al., "Control of open and disaggregated transport networks using the Open Network

Operating System (ONOS) [Invited]", JOCN 2020

[GNPy] GNPy [Online]. Retrieved October 7, 2022, from https://gnpy.readthedocs.io/en/master/

[Gon22] O. Gonzalez de Dios et al, "MANTRA Whitepaper. IPoWDM convergent SDN architecture -

Motivation, technical definition & challenges", Telecom Infra Project, August 2022, [Online]

https://cdn.brandfolder.io/D8DI15S7/at/n85t9h48bqtkhm9k7tqbs9fv/TIP_OOPT_MANTRA_IP_ov

er_DWDM_Whitepaper_-_Final_Version3.pdf

[Gor20] J. Gordon et al., “Summary: Workshop on Machine Learning for Optical Communication Systems,”

NIST Special Publication 2100-04, Mar. 2020 [available online:

https://doi.org/10.6028/NIST.SP.2100-04]

[Gou21] A. Gouin, A. Dupas, Ll. Gifre, A. Benabdallah, F. Boitier, P. Layec, "Real-time optical transponder

prototype with auto-negotiation protocol for software defined networks," Journal of Optical

Communications and Networking, vol. 13, no 9, p. 224-232, 2021

[GRAFANA] [Online] https://grafana.com/

[GRPC22] gRPC Network Management Interface (gNMI) [online], Retrieved October 5, 2022, from

https://github.com/openconfig/reference/blob/master/rpc/gnmi/gnmi-specification.md

[IBN] L. Velasco, S. Barzegar, F. Tabatabaeimehr, and M. Ruiz, "Intent-Based Networking for Optical

Networks [Invited Tutorial]," IEEE/OPTICA Journal of Optical Communications and Networking

(JOCN), vol. 14, pp. A11-A22, 2022.

[INFLUXDB] [Online] https://www.influxdata.com/

[Ish20] K. Ishii et al., “Two-Level Abstraction Approach for SDN-based Service Provisioning in Open Line

Systems Featuring TAPI Externalized Path Computation”. 2020 European Conference on Optical

Communications, ECOC 2020, 2020 https://doi.org/10.1109/ECOC48923.2020.9333136

[Jur20] P. Jurkiewicz et al. “Flow length and size distributions in Campus Internet Traffic”, 2020 (available

arXiv:1809.03486)

[K8s] Kubernetes [Online]. Retrieved October 5, 2022, from https://kubernetes.io/docs/home/

[K8sAPI] Kubernetes API [Online]. Retrieved October 13, 2022, from

https://kubernetes.io/docs/reference/kubernetes-api/

[KAFKA] [Online] https://kafka.apache.org/

[Mam19] L. Mamushiane et al., “Overview of 9 Open-Source Resource Orchestrating ETSI MANO Compliant

Implementations: A Brief Survey”. 2019 IEEE 2nd Wireless Africa Conference, WAC 2019 –

Proceedings, 2019. https://doi.org/10.1109/AFRICA.2019.8843421

[Man21] C. Manso et al., “TAPI-enabled SDN control for partially disaggregated multi-domain (OLS) and

multi-layer (WDM over SDM) optical networks [Invited]”. Journal of Optical Communications and

Networking, 13(1), 2021, pp. A21–A33. https://doi.org/10.1364/JOCN.402187

[MCN] FUTURE COMMUNICATION ARCHITECTURE FOR MOBILE CLOUD SERVICES | Grant agreement ID:

318109 | European Commission [Online]. Retrieved October 5, 2022, from

https://cordis.europa.eu/project/id/318109

 D4.1 GA Number 101016663

96

[MHEC] METRO High bandwidth, 5G Application-aware optical network, with edge storage, compUte and

low Latency | METRO-HAUL Project | Grant agreement ID: 761727 | European Commission

[Online]. Retrieved October 5, 2022, from https://cordis.europa.eu/project/id/761727/es

[Moh19] S. Mohanty et al., “An evaluation of open source serverless computing frameworks”. Proceedings

of the International Conference on Cloud Computing Technology and Science, CloudCom, 2018,

pp. 115–120. https://doi.org/10.1109/CLOUDCOM2018.2018.00033

[Muq21] A. S. Muqaddas et al., “NFV orchestration over disaggregated metro optical networks with end-to-

end multi-layer slicing enabling crowdsourced live video streaming”. Journal of Optical

Communications and Networking, Vol. 13, Issue 8, Pp. D68-D79, 13(8), 2021, D68–D79.

https://doi.org/10.1364/JOCN.423501

[MUST] MUST Optical SDN Controller NBI Technical Requirements Document TIP OOPT PG - Version: 1.1

[Online] Retrieved October 5, 2022 from

https://cdn.brandfolder.io/D8DI15S7/at/sp6tgqcpjp8rgsshf8pvmwpg/TIP_OOPT_MUST-Optical-

SDN-Controller-NBI-Technical-Requirements-v11_FINAL_GREEN_ACCESS.pdf

[NSv16] "Framework for IETF Network Slices - draft-ietf-teas-ietf-network-slices" [Online]. Retrieved

December 16, 2022, from https://datatracker.ietf.org/doc/draft-ietf-teas-ietf-network-slices/

[Nubomedia] NUBOMEDIA: an elastic Platform as a Service (PaaS) cloud for interactive social multimedia | Grant

agreement ID: 610576 | European Commission [Online]. Retrieved October 5, 2022, from

https://cordis.europa.eu/project/id/610576

[OCATA] M. Ruiz, D. Sequeira, and L. Velasco, "Deep Learning -based Real-Time Analysis of Lightpath Optical

Constellations [Invited]," IEEE/OPTICA Journal of Optical Communications and Networking (JOCN),

vol. 14, pp. C70-C81, 2022.

[OCP} Open Compute Project [Online] https://www.opencompute.org/

[ODL] "OpenDayLight Transport PCE" [Online]

https://docs.opendaylight.org/projects/transportpce/en/latest/developer-guide.html

[OIF] “OIF” [Online] https://www.oiforum.com/

[ONAP] “ONAP” [Online]. Retrieved October 5, 2022, from https://www.onap.org/

[ONF] Open Networking Foundation [Online]. Retrieved October 5, 2022, from

https://opennetworking.org/

[ONL] "Open Network Linux" [Online] http://opennetlinux.org/

[ONOS] "ONOS" [Online], https://opennetworking.org/onos/,

https://github.com/opennetworkinglab/onos

[ONOSREST] "ONOS REST APIs" [Online]

https://wiki.onosproject.org/display/ONOS/Appendix+B%3A+REST+API

[OpenROAD

M]

OpenROADM [Online], http://openroadm.org/

[OSM] Open Source Mano, OSM [Online]. Retrieved October 5, 2022, from https://osm.etsi.org/

[OSMRel4] A. Hoban et al., OSM Release FOUR Technical Overview OSM Release FOUR-A Technical Overview,

2018. www.etsi.org

[P4] “P4” [Online]. Retrieved October 5, 2022, https://p4.org/

 D4.1 GA Number 101016663

97

[P4Lang] “P4Lang” [Online]. Retrieved October 5, 2022, https://github.com/p4lang

[Pao13] F. Paolucci et al., “A survey on the path computation element (pce) architecture”. IEEE

Communications Surveys and Tutorials, 15(4), 2013, pp. 1819–1841.

https://doi.org/10.1109/SURV.2013.011413.00087

[Pav15} P. Pavon-Marino and J. L. Izquierdo-Zaragoza, “Net2plan: An open source network

planning tool for bridging the gap between academia and industry,” IEEE Netw, vol. 29,

no. 5, pp. 90–96, Sep. 2015, doi: 10.1109/MNET.2015.7293311.

[Ped18] Pedreno-Manresa, J.J. et al. “On the Need of Joint Bandwidth and NFV Resource Orchestration: A

Realistic 5G Access Network Use Case”. IEEE Communications Letters, 22(1), 2018, pp. 145–148.

https://doi.org/10.1109/LCOMM.2017.2760826

[Red22] Red Hat [Online], What is container orchestration?, 2022. Retrieved October 5, 2022, from

https://www.redhat.com/en/topics/containers/what-is-container-orchestration

[RFC3917] J. Quittek, et al. (Eds.), "Requirements for IP Flow Information Export (IPFIX)," IETF RFC-3917, 2004.

[RFC5103] B. Trammell, et al. (Eds.), "Bidirectional Flow Export Using IP Flow Information Export (IPFIX)," IETF

RFC-5103, 2008.

[RFC7011] B. Claise, et al. (Eds.), "Specification of the IP Flow Information Export (IPFIX) Protocol for the

Exchange of Flow Information," IETF RFC-7011, 2013.

[RFC7015] B. Trammell, et al. (Eds.), "Flow Aggregation for the IP Flow Information Export (IPFIX) Protocol,"

IETF RFC-7015, 2013.

[RFC8040] A. Bierman, M. Björklund and K. Watsen, RFC 8040 "RESTCONF Protocol", January 2017

[SAI] "Switch Abstraction Interface" [Online] https://github.com/opencomputeproject/SAI

[Sca21] D. Scano, A. Giorgetti, A. Sgambelluri, E. Riccardi, R. Morro, F. Paolucci, P. Castoldi, and F. Cugini,

“Hierarchical control of SONiC based packet-optical nodes encompassing coherent pluggable

modules,” in ECOC 2021

[Sga20] A. Sgambelluri, et al., "OpenROADM-controlled white box encompassing silicon photonics

integrated reconfigurable switch matrix" in OFC 2020

[Sga21] A. Sgambelluri, D. Scano, A. Giorgetti, F. Paolucci, E. Riccardi, R. Morro, P. Castoldi, and F. Cugini,

“Coordinating pluggable transceiver control in SONiC-based disaggregated packet-optical

networks,” in OFC 2021.

[Sli17] F. Slim et al., “Towards a dynamic adaptive placement of virtual network functions under onap”.

IEEE Conference on Network Function Virtualization and Software Defined Networks, NFV-SDN

2017, 2017, pp. 210–215. https://doi.org/10.1109/NFV-SDN.2017.8169880

[SoftFIRE] Software Defined Networks and Network Function Virtualization Testbed within FIRE+ | Grant

agreement ID: 687860 | European Commission [Online]. Retrieved October 5, 2022, from

https://cordis.europa.eu/project/id/687860

[SONIC] "SONiC" [Online] https://sonic-net.github.io/SONiC/

[Stra] ONF Stratum [Online] https://opennetworking.org/stratum/

[TAI] "Transponder Abstraction Interface"[Online] https://github.com/Telecominfraproject/oopt-tai

 D4.1 GA Number 101016663

98

[TAPI2.4] Transport API 2.4.0 [Online], Retrieved 15 december at

https://github.com/OpenNetworkingFoundation/TAPI/releases/tag/v2.4.0

[TELEGRAF] [Online] https://www.influxdata.com/time-series-platform/telegraf/

[TFS] ETSI Teraflow SDN Controller, [Online]. Retrieved October 5, 2022, from https://tfs.etsi.org/

[TIP] Telecom Infra Project. [On-line] https://telecominfraproject.com/

[TR-547] TAPI Reference Implementation Agreement TR-547 [Online] https://opennetworking.org/wp-

content/uploads/2021/12/TR-547-TAPI_ReferenceImplementationAgreement_v1.1.pdf

[Uzu21] D. Uzunidis, E. Kosmatos, C. Matrakidis, A. Stavdas and A. Lord, "Strategies for Upgrading an

Operator's Backbone Network Beyond the C-Band: Towards Multi-Band Optical Networks," in IEEE

Photonics Journal, vol. 13, no. 2, pp. 1-18, April 2021.

[Vil21] R. Vilalta et al "Teraflow: Secured autonomic traffic management for a tera of SDN flows", in Proc

of European Conference on Networks and Communications & 6G Summit, 2021

[Wel21] D. Welch et al., ”Point-to-Multipoint Optical Networks Using Coherent Digital Subcarriers”, IEEE

Journal of Lightwave Technology Vol 39, Issue 16, August 2021

