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EXECUTIVE SUMMARY 

This document presents in detail the Infrastructure Control and Service Management platform 

architecture to be implemented in the B5G-OPEN Control, Orchestration and Telemetry System 

(referred to as the control plane, for short), along with a set of initial requirements, and existing 

frameworks. Such platform is aimed at supporting B5G-OPEN key features and goals: 

Multi-Band operation Provision services using available bands out of the O-, E-, S-, C-
, L-band in optical fibres. 

Optical continuum Allow optical slicing based on service requirements and 
crossing network segments (i.e. access, metro, core, etc.) 

Integrated access Operate and control service regardless of the access 
technology (Mobile, Fixed, WiFi, LiFi) 

E2E network orchestration Operate service and network operations from the Access Point 
to the Cloud node, which may include monitoring and AI/ML 

Autonomous operation Based on Intent-based and zero-touch networking paradigms, 
autonomous operation is built using closed-control loops at 
various levels, from device to network. 

After the introduction in Section 1, Section 2 presents the B5G-OPEN set of Control and Service 

Management use cases, carefully developed within WP2 and extended to the control plane.  

The use cases target the provisioning of services over the B5G-OPEN domainless multi-band 

network, the discovery of the existing resources and topology, planning of the network 

resources, advance use cases to support fault management. In addition, use cases for 

autonomous network operation are also described. 

B5G-OPEN Control plane services documented in section 3 include point-to-point optical 

connectivity, point-to-multipoint XR connectivity, IP link provisioning, B5G-OPEN Slice and 

telemetry services.  

To realise such services, the control plane architecture must comply with the following set of 

requirements: perform context, connectivity, topology and physical impairments discovery 

and  Asynchronous notification of topology and connectivity object changes  

 

The document describes in detail the proposed control plane architecture, summarized in 

section 5 and shown in the figure above. The major parts of the architecture include: service 

orchestration and planning (sections 6, 7 and 8), packet optical-integration systems (section 9), 

telemetry (section 10) and intent-based networking (section 11).  
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An initial proposal of the necessary interfaces and protocols to be used among the different 

control plane components and towards external systems and network elements is presented in 

Section 12. The detailed specification will be provided in the next deliverable. 

In a nutshell, this document introduces a number of control plane innovations to be developed 

within WP4, namely: 

- Control of optical multiband network, that is, to exploit the multiband capabilities of 

optical devices, both transmission and switching elements. 

- Physical layer impairments of multiband optical networks, where the increasing number 

of non-linear effects need to be considered in the control plane for a better 

management and orchestration of the network and services. 

- Control of transparent multi-domain, that is, the ability to setup connections in a 

transparent manner, across multiple domains and network segments. 

- Packet/optical integration, where the gradual introduction of pluggable interfaces 

directly in the switches need to be incorporated into the control plane. 

- Access/Metro integration, with control of different access technologies (PON, LiFi). 

- Telemetry, where the ability to continuously monitor the network is critical as a first 

step to diagnose its behaviour and take decisions in case of malfunctioning. 

- External planning tools, where multiple algorithms can be defined to optimise network 

behaviour and operations, making use of quality data at different levels (optical and 

packet level). 

- Network automation, which ultimately implies autonomous operations of the network 

to further reduce human intervention, leading to a self-managed network based on 

telemetry data and historical experience, along with AI/ML techniques for closing the 

observe-decide-act loop.  
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1 

 

1 INTRODUCTION 

This document details the Infrastructure Control and Service Management architecture to be 

implemented in the B5G-OPEN Control, Orchestration and Telemetry System (control plane 

for short), along with a set of initial requirements, and existing frameworks. The document 

comprises three main parts, each one containing multiple chapters. 

The key B5G-OPEN goals and major innovations, as outlined in the proposal, include the 

design of a network architecture featuring multi-band, optical continuum, integrated access, 

end-to-end network orchestration and autonomous operations. The first part includes 

Section 2 which overviews a set of initial requirements and use cases, carefully developed 

with WP2, and extended to the control plane. Section 3 further develops on the services that 

the control plane of B5G-OPEN must support, for instance, point-to-point optical 

connectivity, point-to-multipoint XR connectivity, IP link provisioning, telemetry and optical 

topology services, etc. 

In the second part of the document, Section 4 provides a thorough review of existing 

frameworks in the literature, some of them will participate in the design of the control plane 

architecture. Examples include an overview of most popular control plane frameworks and 

network operating systems, different tools for implementing network telemetry systems, 

main orchestration frameworks and Quality of Transmission (QoT) estimation tools. 

The third part of the document comprises multiple chapters devoted to the definition of 

different parts of the control plane architecture. In this sense, Section 5 overviews the major 

parts of the architecture, including service orchestration and planning, optical-packet 

integration systems and telemetry and intent-based networking. Section 6 introduces the 

SDN control of optical multi-band networks, while Section 7 explains the control of different 

access technologies (PON, LiFi, etc). Section 8 is devoted to the IT and network resource 

orchestration platform, and Section 9 to the packet-optical integration. Section 10 overviews 

the architecture of the telemetry system, in charge of monitoring the quality of network 

connectivity at the optical level and packet flow level. Section 11 overviews the requirements 

and architecture for autonomous network operations. Next, Section 12 provides further 

details on the interfaces and systems participating in the whole control plane architecture, 

described from Section 5 until Section 11. 

Finally, Section 13 concludes this document with a summary of its main contributions to the 

B5G-OPEN project and next steps. 
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2 INITIAL REQUIREMENTS AND USE CASES 

The B5G-OPEN control and management plane requirements follow the need to support the 

project’s key features showed in the following table and derived from Deliverable D2.1: 

 

Key Feature  Description  

Multi-Band 

operation  

Availability of bands O, E, S, C, L in optical fibres to provision: a) the required 

capacity, and b) service based on requirements  

Optical 

continuum  

Operate connectivity extending the principles of optical bypassing of nodes in 

the Multi-Band B5G-OPEN network, allowing optical slicing based on service 

requirements and crossing network segments (i.e. access, metro, core, etc.)  

Integrated 

access  

Operate and control service regardless of the access technology (Mobile, Fixed, 

WiFi, LiFi)  

E2E network 

orchestration  

Operate service and network operations from the Access Point to the Cloud 

node, which may include monitoring and AI/ML  

Autonomous 

operation  

Based on Intent-based and zero-touch networking paradigms, autonomous 

operation is built using closed-control loops at various levels, from device to 

network. Empowered by a distributed AI/ML-based engine providing data 

collection and intelligent aggregation, analysis, and acting on the network 

devices, autonomous operation enables coordinated decision-making across 

domains  

Table 1.1: B5G-OPEN key features 

Multi-Band technologies offer the potential to facilitate the implementation of an optical 

bypass at the central office for selected traffic, leading to the concept of optical continuum 

and removing unnecessary electronic intermediate terminations. Based on the requirement 

of the traffic that need to be transported, the electronic termination may be located at 

different points of the network. Moreover, components such as transmission systems and 

optical switches/ROADMs may operate in one or multiple bands depending on vendors’ 

choices and carriers’ network implementation. Clearly, such an architecture goes beyond the 

concept of network segmentation since no clear and uniform demarcation points are 

identifiable. Also, the availability of programmable pluggable modules implementing 

sophisticated functions that can be fitted into Ethernet white boxes makes weaker the 

boundaries between network segments. In fact, the same boxes, having packer layer 

switching capabilities, could host both programmable optical pluggable modules and/or 

modules implementing access functionalities (PON transceivers) resulting in packet/optical 

devices integrating aspects typical for both access and metro/regional segments. 

Moreover, it can be easily foreseen that, in the near future, other pluggable modules will 

appear implementing functions now typical of monolithic devices. In such a context, the B5G-

OPEN control plane must overcome the traditional approach where every network segment 

is under the control of a dedicated controller, eventually coordinated by a parent one. Also, 

the rigid subdivision of control functions dedicated to a specific network layer (packet or 

optical) must be replaced by a more flexible approach to simplify the interaction with the 

novel pluggable modules that, despite being fitted into a packet device, need configurations 
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typical of other network segments. To reach this goal, the B5G-OPEN control plane could 

leverage concepts from the cloud environment and adopt a microservice architecture based 

on containers that offer easy and rapid introduction of new features as soon as the data plane 

technology evolves and seamless migration of functionalities between modules to follow 

network evolutions, e. g. when pluggable modules integrating new features are introduced. 

A containers’ orchestration solution such as Kubernetes could provide even more flexibility 

in terms of scalability and coordination among all the control plane modules. 

Such a modular architecture must rely on standard and open interfaces between the control 

plane functions and towards the devices. The Open Networking Foundation (ONF) [ONF] has 

developed a standard API called Transport API (TAPI) which has become a de-facto standard 

in the field of SDN controllers. At device level, instead, two data models are catalysing the 

attentions of the market, with different degree of adoption mainly depending on the device 

type (X-ponder or ROADM): OpenConfig and OpenROADM. In particular, to support Multi-

Band, the control plane must take into account all the constraints required to provision end-

to-end media channels (i.e. spectral resources) in such an environment and provide 

procedures such as automatic inventory management, Multi-band (MB) impairment-aware 

path computation, MB topology abstractions and automatic identification of candidate pre-

validated configurations. Generally speaking, the above-mentioned existing data models are 

already (or require very little adaptation for) supporting MB networks. What needs to be 

defined is a kind of “rule of thumb” for using them in a common way. Nevertheless, path 

computation algorithm must be extended to support the presence of several transmission 

bands. Also, new protection/restoration schemes must be developed to exploit the larger 

bandwidth available thanks to MB. 

Since the B5G-OPEN reference network architecture is intrinsically ‘domain-less’, in the sense 

that, as stated above, there are no clear demarcation points between the network segments 

that today correspond to the access, metro and part of the core, the B5G-OPEN control plane 

must implement end-to-end orchestration of services from the Access Point to the Cloud 

node with new and innovative models beyond the traditional packet over optical approach. 

In this field, several open-source initiatives are available with different degrees of complexity 

and flexibility, but the “domain-less” perspective of the B5G-OPEN network requires a re-

consideration of the traditional MANO architecture and a different approach to the control 

modules interface, also adopting a lightweight virtualization method relying on container 

management or serverless computing. 

The high bandwidth availability guaranteed by Multi-Band is an opportunity for efficient 

network sharing at the optical layer. Also, innovative pluggable modules in the access 

segment (e. g. Tibit) and the novel optical point-to-multipoint pluggables (e. g. XR-optics) are 

key drivers for sharing aggregation resources. Network slicing allows taking full advantage 

from the opportunity offered by these technologies and, therefore, it is another feature that 

the B5G-OPEN control plane must support. For what concerns XR-optics, even if developing 

a control plane for it is not an objective of the project, the B5G-OPEN control plane should 

support network services exploiting the capabilities offered by the novel point-to-multipoint 

pluggable transceivers. Currently, among the most used data model for optical networks, 

only T-API encompasses the concept of point-to-multipoint connectivity, while device models 

like OpenConfig and OpenROADM require specific extensions. 

Intent-based networking and autonomous operations are mandatory for the innovations 

envisioned by the project. The control plane architecture should provide an abstracted view 
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of the network and close-control loops operated at various levels, from device to network, 

must be implemented in support of distributed AI/ML techniques to enable coordinated 

decision-making across control domains. Advances in optical technology with the 

introduction of coherent transmission thanks to DSP-based transceivers offered unprecedent 

opportunities for massive monitoring of the physical layer to detect and proactively correct 

soft-failures. However, collection of real time monitoring data can potentially saturate both 

the bandwidth of management interfaces and the CPU power of the servers. The B5G-OPEN 

control plane should adopt a collaborative approach between the network controller and 

node agents for the implementation of the streaming telemetry systems to reduce the 

amount of monitored data and an architecture based on the publish/subscribe paradigm to 

selectively address data only to the interested modules. 

2.1 INITIAL CONSIDERATIONS 
The first main functionality to be provided by B5G-OPEN Control plane is the Multi-Band 

Optical Network operation. B5G-OPEN Use cases are based on ONF TF-547 v1.1 [TR-547], 

provides a set of use cases for control and management of optical networks based on TAPI, 

which have been adopted by Telecom Infra Project (TIP) MUST Optical sub-group. This is 

motivated by the fact that B5G-OPEN partners are actively participating in such 

standardization activities and are in an excellent position to provide feedback on 

implementation, along with preliminary considerations regarding their applicability to multi-

band networks (since TR-547 mostly considers single band operation), 

 

Fig. 2.1 Use case taxonomy (source TIP)  

A set of use cases that showcase the B5G-OPEN COM capabilities are described below: 

2.2 SERVICE PROVISIONING/ACTIVATION OVER DOMAINLESS MULTI-BAND NETWORK  
This set of use cases comprise setting up and tearing down the required Connectivity services 

over a multi-band enabled network, including point-to-point and point-to-multi-point, which 

are described in section 3.  The provisioning operation needs to be triggered via 

programmatic interface. The request might come directly from the network operator, or via 

another component of B5G-OPEN Control and Management plane.  

It is important to consider that, even though the network can be comprised of multiple 

segments (access/aggregation/core), B5G-OPEN control plane will treat the network as 

“domainless” and will allow connectivity to be requested among any point of the network. 

This might comprise that the service can cross multiple OLS.  
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The services to activate are detailed in section 3.  

[REQ.PROV.1] The provisioning should consider multiple constraints in the requests, in order 

to fulfil the requirements of the applications described in WP2. Those constraints should 

consider bandwidth, delay, jitter and reliability.  

 

2.3 DISCOVERY USE CASES 
This group of use cases targets the retrieval of information available from B5G-OPEN control, 

orchestration and telemetry system including topology, service-interface-points, 

connectivity-services and connections. This section addresses Discovery Aspects from the 

point of view of an end user, typically understood as a human actor or an Operator Business 

Support System or Operations Support System. This does not exclude the fact that, internally 

and considering partially disaggregated architectures with a dedicated OLS controller, B5G-

OPEN control plane needs to obtain Open transponders information directly from the open 

terminals (OTs) devices and IP/Optical whiteboxes using Netconf/OpenConfig, which is part 

of the discovery process  

The following operations need to be supported: 

[REQ.DIS.1] Context discovery: A “context” in an abstraction that allows logical isolation and 

grouping of network resources. The context in B5G-OPEN will expose the set of Service-

interface-points, which represent the available customer-facing point from where 

connectivity network services can be requested.  

[REQ.DIS.2] Connectivity discovery: B5G-OPEN will automatically discover network 

connectivity services in the DSR layer, which model digital signals and PHOTONIC_MEDIA 

layer, in particular media channels as per [ITU-T G.872]. The list of connectivity services 

created within the context will need to be provided. 

[REQ.DIS.3] Topology discovery: The control plane needs to provide a dynamic 

representation of the network based on a synchronization with the network elements. The 

topology is described in terms of nodes and links that enable the forwarding capabilities of 

the network resources. Nodes are an abstraction of the forwarding capabilities of a network 

element and will contain collection of ports and the potential to enable forwarding between 

those ports. The links are an abstract representation of the adjacency between nodes in the 

topology. 

[REQ.DIS.4] Asynchronous notification of topology changes: B5G-OPEN control system needs 

to send events exposing changes in links, nodes, and node edge points. These events are 

triggered, for example, upon network failures or due to network upgrades.  

[REQ.DIS.5] Asynchronous notification of connectivity object changes: B5G-OPEN control 

system needs to send events exposing changes in the connectivity services.  

[REQ.DIS.6] Physical layer impairments discovery: WP3 has defined an impairment model for 

the muti-band optical layer. The B5G-OPEN control plane needs to retrieve from the network 

the necessary information to feed the model specified in Deliverable D3.1. 
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2.4 DESIGN USE CASES 
There use cases are aimed at providing support for the Network Operator to design the 

packet/optical network. The B5G-OPEN COM will provide: 

- [REQ.UC.DES.1] Network Dimensioning/ Capacity planning: These use cases 

correspond to a network design phase, when the network needs to be conceived from 

scratch (greenfield design), or new equipment should be added to an existing network 

(brownfield design). The output produced is commonly composed of a bill-of-materials 

of the network equipment to deploy, as well as traffic engineering policies to enforce. 

Optimization problems involved are typically large, considering aspects like fault 

tolerance targets, and worst-case latency constraints policies. In this use cases, it is 

accepted algorithm running times in the order of minutes or even longer, since their 

results are not applied immediately to the network.  

- [REQ.UC.DES.2] Network provisioning: These use cases correspond to the on-demand 

allocation of resources, to be completed in nearly real time, and that end-up in the 

reconfiguration of the existent equipment (i.e. but not the commissioning of new 

equipment in the network). For instance, capacity on-demand use cases result in 

situations where new incoming service requests should be provisioned, with target 

times in the order of seconds. These time constraints ay become more stringent when 

the algorithms should satisfy resource allocations corresponding to network recovery 

use cases. 

2.5 SUPPORT TO FAULT MANAGEMENT USE CASES  
Pain-points of Network operators include understanding the cause of services not working 

as expected. The B5G-OPEN Control and Management system will provide advanced 

functionalities for the network operator in terms of supporting the fault management 

process. 

- [REQ.UC.FM.1] Degradation detection/location in single domain/multi-domain 

 This use case targets at modelling and evaluating the performance of lightpaths traversing 

multiple domains. To this end, models that characterize an optical connection within an 

optical domain can be shared, so models for multiple domains lightpaths can be created. 

Armed with those models, telemetry measurements are received and compared against 

what is expected from the models. This strategy allows detecting degradations, identifying 

them, evaluating its severity, and localizing the cause of the failure causing the degradation. 

- [REQ.UC.FM.2] Recovery after failure/degradation 

This use case complements the previous one by taking action in case that some links and/or 

optical bands suffer important Quality of Transmission (QoT) degradation. In such a case, the 

control plane will detect such degradation via telemetry and provision an alternative path 

and/or band to re-allocate the flows. 

2.6 AUTONOMOUS NETWORK OPERATION USE CASES 
In addition to being able to set up the necessary connectivity, B5G-OPEN Control System will 

provide autonomous network operation by having closed closed-control loops at various 

levels, from device to network. 
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- [REQ.UC.AN.1] Quality assurance based on Intent-based Networking (IBN) 

This use case envisions using IBN-based applications to assure the quality of the multi-

band optical transport network. A specific IBN application need to accurately model 

optical links, nodes and the lightpaths, considering physical layer modeling (noise, 

filtering…). Real-time telemetry will continuously feed the IBN applications to ensure the 

awareness of the network state. The IBN applications will be able to anticipate quality 

issues in the network and take the necessary steps to solve them. 

- [REQ.UC.AN.2] Automatic assignment of flows to multi-band slices 

Thanks to the multi-band capabilities, B5G-OPEN network architecture is able to allocate 

multiple per-band slices. This use case is aimed at providing an autonomous operation where 

the control plane identifies the flows and based on AI/ML, takes the decision on assigning 

flows to a relevant slice. In the case that there are no slices that can guarantee the 

connectivity needs of the flows, the control plane will automatically create a new slice. 

3 B5G-OPEN CONTROL PLANE SERVICES  

The considered use cases, related requirements, and detailed network architecture from 

WP2 have been used as a starting point to identify a set of Control Plane Services, to be 

elaborated within the scope of WP4.  

In this context, a control plane service is understood as a network service whose lifetime is 

managed by the B5G-OPEN control plane – in other words, it is responsibility of the B5G-

OPEN control, orchestration and telemetry system – and it is established via one or more 

North Bound Interfaces (NBI), dynamically and upon demand. This can apply regardless of 

the time scale of the provisioning.  

Similar to the aforementioned use case taxonomy, control plane services are macroscopically 

grouped into Provisioning & Discovery, offering APIs and GUI for providing network topology 

info, and for allowing provisioning use cases. In addition, there are additional services related 

to Telemetry and Path Computation along with Network dimensioning & analysis module. 

This includes required resource allocation & capacity planning algorithms based on resource 

occupation information.  

This is shown in the Figure 3-1, with a simplified representation of the control plane 

architecture. The architecture is described later on in Section 5 (overview and main 

considerations), Section 6 (Optical network control), Section 7 (Access control integration) 

Section 8  (IT orchestration), Section 9 (for packet/optical integration) and Section 10 (for 

Telemetry). 
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Figure 3-1 Macroscopic B5G-OPEN architecture and Service instantiation interfaces. 

The following subsections summarize such services, presenting a brief description and 

applicability statement. 

3.1 POINT TO POINT OPTICAL CONNECTIVITY  
The Point-to-Point Optical Connectivity service addresses point to point connection between 

optical ports, corresponding to, for example, the line ports of packet/optical devices or 

discrete transceivers (when the configuration remains at the OTSi layer) or corresponding to 

ROADM add/drop ports (when the configuration focuses on the media channel layer) as 

shown in Figure 3-2. It mainly involves the provisioning of a media channel (provisioning of 

raw optical spectrum) within a given optical band, and it is characterized by its effective 

frequency slot. The dynamic provisioning and deployment of the service involves different 

elements of the control plane architecture (see Section 5). This can be done in an integrated 

scenario or in a full or partially- disaggregated scenario, via a dedicated Open Line System 

(OLS) controller, as shown. It is worth mentioning that this service applies at the photonic 

media layer only and deals with allocation of media channels (variable sized frequency ranges 

corresponding to optical spectrum). As shown in the figure, macroscopically, it relies on an 

arrangement of controller(s) -- including the OLS controller in a partially disaggregated 

scenario – exporting standard interfaces. Further details will later be introduced regarding 

the final decomposition of the controllers and applicable TAPI North Bound Interfaces 

specifications and modelling. 
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Figure 3-2 Point to Point Optical Connectivity Service. 

3.2 POINT TO POINT DSR CONNECTIVITY  
This service addresses Digital Signal Rate (DSR) provisioning between two stand-alone 

transceivers or whiteboxes with integrated transceivers. It is part of IP link provisioning 

between elements (packet/optical nodes) and relates to creating, dynamically and real time, 

connectivity to support packet transmission between whiteboxes.  Given end transceivers, 

rate and applicable constraints, the control plane configures and activates the “line part” of 

the transceiver (modulation, spectrum). Note that the creation of a DSR connectivity service 

typically triggers the interaction with the optical SDN controller and OLS controller, including, 

eventually, the creation of OLS point to point connectivity (see above).  

3.3 POINT TO MULTIPOINT XR CONNECTIVITY  
This service addresses the provisioning of a point to multipoint connection from a hub to 

several leaves. The service will be realised by means of OpenXR [Wel21] configuration of the 

transceivers and relies on a dedicated sub-controller. This OpenXR controller is under the 

control of the B5G-OPEN orchestrator, and logically provides multiple point-to-point links 

between routers attached to the hub (root) and leaves of the system. 

3.4 IP LINK PROVISIONING 
Related to the previous service, and given an existing DSR service, the B5G-OPEN 

orchestrator interacts with IP SDN controller to configure the transceivers as IP interfaces in 

the whitebox. The newly created DSR connectivity becomes a logical interface (e.g., serialXX, 

ethXX), and The DSR connectivity is seen by the device as a physical port with an associated 

logical interface (...) which can be used to forward packets (of any kind, not only IP, for 

example LLDP, IS-IS, etc). This is shown in Figure 3-3, and the relevant list of operations to 

perform can cover e.g., interface activation, IP address configuration, etc. 
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Figure 3-3 IP link provisioning between the whiteboxes. 

 

Figure 3-4 multiple IP link provisioning between the whiteboxes using P2MP XR. 

3.5 PACKET/IP CONNECTIVITY 
Generally speaking, IP connectivity relies on the existence of IP links between whiteboxes. 

When we consider packet or IP connectivity, we refer to configuring packet switching at the 

Packet/Optical nodes. This configuration can rely, typically, on IP forwarding or in more 

advanced SDN-based solutions, such as those based on P4. In this context, an SDN controller 

may either i) configure IGP/routing protocols (such as OSPF or BGP) or ii) provide flow 

configuration for flow switching, based on e.g., addresses, ports. 

For non-connection-oriented IP, (regular IP routing) given end IP routers (whiteboxes), rate, 

IP QoS, and constraints, it is responsibility of the B5G-OPEN Orchestration platform to check 

(via Dimensioning & analysis module) if there is enough IP capacity and take the decision of 

making the required IP link/DSR provisioning.  

3.6 P2MP ACCESS CONNECTIVITY  
The orchestrator is also responsible to ensure P2MP connectivity with the access segment. 

This involves the configuration of the PON controller and is detailed in Section 7 

3.7 B5G-OPEN NETWORK SLICE  
In this context, a B5G-OPEN slice is defined as a set of interconnected computing and storage 

functions, deployed within the B5G-OPEN infrastructure, and which involves the 

orchestration of heterogeneous computing, storage, and networking resources. 

Computing functions are instantiated within computing servers or nodes, and they are 

interconnected using dynamic network connectivity (thus relying on the previously 
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mentioned services). They may correspond to containers (e.g., Cloud Native Functions, CNF) 

or Virtualized Network Functions (VNF).  

Such service information model shall contain a list of functions, their interconnection, and 

related constraints in terms of bandwidth and other KPIs. Two critical KPIs to consider are: 

• End-to-end latency: measured as the maximum delay between network functions. 

• End-to-end estimated jitter: measured as an estimation of e.g., the standard 

deviation of the end-to-end latency in the connection between network functions. 

In this regard, the B5G-OPEN orchestrator needs to be able to provision slices using 

Kubernetes [K8s] nodes (see Figure 3-5) as follows: given a set of K8sS services to instantiate, 

and optionally the K8s clusters where they should be instantiated (if not, enough info for 

optimizing the placement should be given), and a list of service-to-service connections to 

configure (s1, s2, Gbps, end-to-end KPIs), then compute the optimal service placement, IP 

capacity, optical capacity needs, satisfying the end-to-end KPIs. Then, the instances of the 

services in the K8S are automatically provisioned, as well as the planned network resources.  

 

Figure 3-5 Example of slice information model 

3.8 OTHER SERVICES 

3.8.1 Telemetry services 

At any part of the control plane architecture, systems and devices may export telemetry 

services. Telemetry clients may connect and be updated with events, telemetry data etc. The 

expected behaviour of clients is to connect to the Telemetry System, as described in Section 

10. 

3.8.2 Optical Topology Services 

Clients MUST be able to retrieve the topology of the underlying optical network. This means 

being able to retrieve the set of links, nodes, and ports associated with the different layers 

and, notably, including additional information that may be useful for externalized path 

computation entities.   

3.8.3 Optical Path Computation Services 

Clients MUST be able to perform path computation on the underlying topology. This can be 

consumed internally or left for external clients. The details are provided in Section 6.5 
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4 EXISTING FRAMEWORKS  

4.1 CONTROL PLANE FRAMEWORKS  
Regarding the control plane, this section reports the open-source initiatives for the SDN 

control of the network. The B5G-OPEN controller will be required to control not only the 

disaggregated optical transport network but also the packet-based network (e.g., supporting 

P4-based devices).  

The main open-source initiatives raised from the traditional SDN community are 

OpenDaylight [ODL] and the Open Network Operating System [ONOS]. Both include some 

support for the control of optical transport networks. More recently, the TeraFlow project 

[Vil21] started the development of a new open-source SDN controller specifically oriented 

toward a cloud-native architecture, currently this controller does not support optical 

transport networks.  

4.1.1 ONOS 

The ONOS (i.e., Open Network Operating System) SDN controller is an open-source initiative 

promoted by the Open Networking Foundation (ONF) with the support of many of the most 

important telecommunication vendors and operators [ONOS]. ONOS has been designed to 

meet the scalability and reliability needs of operators wishing to build carrier-grade solutions 

that leverage the economics of white box merchant silicon hardware while offering the 

flexibility to create and deploy new dynamic network services with simplified programmatic 

interfaces. For this purpose, ONOS is based on a modular architecture that facilitates the 

development and the deployment of new modules such as: novel network applications, 

additional northbound interfaces, additional southbound drivers, and protocols. 

Within the ONF community, ONOS is part of a wider set of initiatives which includes other 

related projects such as the development of switch operating systems and modules for P4-

based hybrid packet/optical devices (i.e., STRATUM, and PINS), the modelling of standard 

interfaces toward transport networks (i.e., TAPI), the development of a packet-based 

network emulator (i.e., MININET) and several specific applications developed over the ONOS 

controller. Such applications are devoted to specific use cases, e.g., the Open and 

Disaggregated Transport Network (ODTN) project that in the recent years leaded the 

extension of ONOS to control and monitor disaggregated optical transport networks.  

With the practical aim of building up on the ONOS controller components developed within 

the METRO-HAUL and ODTN projects the B5G-OPEN consortium agreed to select ONOS for 

the implementation of the functionalities required at the SDN controller level, both for the 

optical layer as well as the packet and aggregation layer. 

4.1.2 OpenDayLight 

OpenDaylight (ODL) is a modular open platform for customizing and automating networks of 

any size and scale. The ODL Project [ODL] arose out of the SDN movement, with a clear focus 

on network programmability. It was designed from the outset as a foundation for commercial 

solutions that address a variety of use cases in existing network environments. Indeed, ODL 

code has been integrated or embedded in more than 35 vendor solutions and apps, and can 

be utilized within a range of services. It is also at the core of broader open-source 

frameworks, including ONAP [ONAP]. 
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Also, the ODL controller is organized following a modular architecture where underlying 

network devices and network applications are all represented as objects, or models, whose 

interactions are processed within the ODL core.  

The ODL controller is not proposed as a part of the B5G-OPEN control plane, however, it 

could be considered to support already existing deployments in view of the existence of 

devices already integrated in this platform. 

4.1.3 TeraFlow 

The TeraFlow project [Vil21] is developing a novel cloud native SDN controller for beyond 5G 

networks. This new SDN controller is able to integrate with current NFV and MEC frameworks 

as well as to provide revolutionary features for flow aggregation, management (service 

layer), network equipment integration (infrastructure layer), and AI/ML-based security and 

forensic evidence for multi-tenancy. The project proposes an integrated solution for tackling 

various challenges of B5G networks to support service providers and telecommunication 

operators in their journey towards future networks. 

TeraFlow has launched the first release of the TeraFlow OS SDN controller. It has become an 

open-source project under the umbrella of ETSI [TFS]. ETSI announced in May 2022 their 

decision of hosting the recently created TeraFlowSDN open-source group. ETSI is officially 

recognized by the European Union as a European Standards Organization (ESO). The 

evolution of this project is being accurately followed by the B5G-OPEN consortium. We will 

explore collaboration opportunities, such as the joint Teraflow-B5G-OPEN special session 

that took place in EUCNC2022. 

4.2 EXISTING NOS FRAMEWORKS  
This section reviews currently available open-source tools and standard models for the 

implementation of the Network Operating System (NOS) of packet/optical nodes and 

traditional optical devices such as transponders, ROADMs and OLSs. 

4.2.1 Packet/Optical nodes 

The recent advances in transmission technology have driven the introduction of coherent 

pluggable transceivers (i.e., pluggables) that can be equipped within packet switching devices 

thus building up a hybrid device with packet switching and advanced optical transmission 

capabilities. For example, Digital Coherent Optics (DCO) pluggables are commercially 

available at rates of 400 Gbps with configurable transmission parameters in different form 

factors, such as CFP2 and the smaller QSFP-DD 400ZR. The replacement of standalone 

transponders with pluggables in the packet devices directly connected to the switching 

elements of the optical network (e.g., ROADMs) drives significant benefits in terms of capital 

expenditures, power consumption and footprint. Furthermore, it enables a tight integration 

between packet and optical networks. For example, a single device can provide both intra-

data center traffic aggregation and, thanks to coherent pluggables, data center to data center 

interconnection.  

The hybrid nodes should support programmability on both technological sides. Specifically, 

most advanced solutions can be typically programmed exploiting P4 data plane 

functionalities and utilizing the P4-Runtime protocol on the packet side, while the optical side 

that requires simpler configuration is typically programmed operating on the device YANG 

model. This point can be achieved using a variety of protocols depending on the specific 
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implementation (e.g., NETCONF, gRPC, gNMI). Thus, controlling packet-optical solutions 

requires a complete Network Operating System (i.e., NOS), that is more complex than 

traditional software agents employed in standalone transponders [Sga20, Gio20].  

This section describes the different open-source initiatives that are currently targeting to the 

implementation of a NOS for hybrid packet optical nodes. 

4.2.2 SONiC 

SONiC (Software for Open Networking in the Cloud) is an open-source network operating 

system based on Linux that can run on switches produced by multiple vendors, based on 

several ASICs [SONIC]. This solution offers a full-suite of network functionality, (i.e., BGP) that 

has been production-hardened in the data centers of some of the largest cloud-service 

providers. It offers the flexibility to create the needed network solutions while leveraging the 

collective strength of a large ecosystem and community. 

SONiC is already widely used in production intra-DC networks and it is also considered a 

strong candidate for packet-optical nodes although some operational extensions are needed 

to fill the existing architectural gaps. For example, the current SONiC distribution does not 

natively support NETCONF and it does not encompass the needed software components to 

operate on coherent pluggable transceivers. The upgrades needed for the support of hybrid 

packet/optical nodes are in via of developments in the initiatives reported in the following. 

• PINS (P4 Integrated Network Stack): P4 Integrated Network Stack (PINS) is an 

industry collaboration among ONF, Intel and Google, bringing SDN capabilities and 

P4 programmability to traditional routing devices that rely on embedded control 

protocols. Specifically, this project targets the deployment of a dedicated container 

on network devices running SONiC. It uses P4 to model the pipeline switch 

abstraction interface SAI [SAI], adds externally programmable extensions to the 

pipeline and introduces P4Runtime as a new control plane interface for controlling 

the pipeline.  

• GoldStone: this project utilizes many existing open-source components which have 

been developed in Open Compute Project [OCP] and Telecom Infra Project [TIP] 

including Open Network Linux [ONL], SONiC, SAI and Transponder Abstraction 

Interface [TAI] to provide a full-fledged open-source solution. ONL is used as the base 

operating system and provides a wide range of open network device support. On top 

of ONL, Kubernetes is employed to enable containerized application management, 

which realizes flexible and modular software composition. SONiC/SAI is deployed as 

a fleet of containers when the target hardware comprises Ethernet switch ASIC, 

whereas TAI is used when the target hardware has coherent transponder 

components. Because of its modular architecture, Goldstone can be extended to 

support networking devices, which don't have Ethernet ASIC, but may include 

conventional transponders, ROADMs or amplifiers in the future. 

• Proprietary SONiC distributions: several hardware vendors (e.g., Edgecore, DELL) are 

currently providing extended SONiC distributions to assure the support of their 

hardware and to offer advanced application while keeping the NOS openness to the 

deployment of user applications. Specifically, the support of optical coherent 

pluggables is progressing slowly within the community SONiC distribution, but it is 

already provided by the Edgecore SONiC.   
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Being SONiC based on a modular architecture exploiting the concept of containers, it 

guarantees high flexibility in terms of deployable features. Specifically, users could 

implement the required additional features on a custom-built container to be later deployed 

on the SONiC operating on the network device. Within the B5G-OPEN this flexibility is 

fundamental because it allows the deployment of the network agents and interfaces toward 

the SDN controller (e.g., NETCONF agents) building on the work done on previous research 

projects. Therefore B5G-OPEN project will concentrate on the utilization of SONiC as the 

primary solution as NOS of packet/optical nodes. 

Moreover, among the aforementioned projects, PINS is currently the most active for 

introducing the full configurability of the packet switching based on P4 and P4Runtime. Its 

development and deployment steps are well detailed in the SONiC development roadmap 

periodically published on the main SONiC. Therefore B5G-OPEN project will closely monitor 

the evolution of PINS for implementing a SDN interface toward the controller.  

Finally, since the implementation of the tools enabling the configuration of optical pluggables 

is slowly progressing in the community SONiC distribution, B5G-OPEN will consider the 

utilization of proprietary SONiC distributions (EdgeCore) for the control of coherent 

pluggables.  

4.2.3 Stratum 

Stratum [Stra] is an open-source silicon-independent NOS for SDN-based networks 

developed by the Open Networking Foundation [ONF]. It is building an open, minimal 

production-ready distribution for white box switches. Stratum exposes a set of next-

generation SDN interfaces including P4Runtime and OpenConfig, enabling interchangeability 

of forwarding devices and programmability of forwarding behaviours. 

Stratum avoids the vendor lock-in of today’s data planes (i.e., proprietary silicon interfaces 

and closed software APIs) and enables easy integration of devices into operator networks. It 

delivers a complete white box switch solution to realize the ‘software defined’ promise of 

SDN. The Stratum project broadens the scope of SDN to include full lifecycle control, 

configuration and operations interfaces. Envisioned as a key software component of SDN 

solutions of the future, Stratum implements the latest SDN-centric northbound interfaces, 

including P4, P4Runtime, gNMI/OpenConfig, and gNOI. It does not embed control protocols, 

but instead is designed to support either an external NOS or to work with NOS functions 

running on the same embedded switch. 

Some partners within the B5G-OPEN consortium have experience with this NOS, that 

however is not considered as the first option because the planned development is more 

oriented toward the support of the packet side of the device with limited focus toward the 

support of pluggables. However, it could be considered for operating devices already 

available at the partners laboratories, especially if advanced features have to be 

implemented based on P4/P4Runtime.  

4.2.4 Proprietary solutions  

Besides open-source initiatives, there are some proprietary NOS available on the market 

offering a standard model of the device that can be used for both device configuration and 

monitoring. Among these tools, it is worth mentioning the OcNOS system provided by 

IPinfusion [OCN] because it provides the support for the Cassini Whiteboxes including the 

utilization of coherent pluggables.  
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Being this tool not open-source it will be considered only as a backup solution for operating 

devices already available at the partners laboratories.  

4.3 TELEMETRY FRAMEWORKS 
This section overviews different frameworks related to telemetry. It covers: 1) protocols and 

platforms related to measurements and events data streaming, and 2) engines for search and 

visualization. 

4.3.1 IPFIX 

Internet Protocol Flow Information Export (IPFIX) is an IETF protocol, as well as the name of 

the IETF working group defining the protocol [RFC7011]. It was created based on the need 

for a common, universal standard of export for Internet Protocol flow information from 

routers, probes and other devices that are used by mediation systems, accounting/billing 

systems and network management systems to facilitate its services. The IPFIX standard 

defines how IP flow information is to be formatted and transferred from an exporter to a 

collector. 

The IPFIX standards requirements were outlined in the original [RFC3917]. Cisco NetFlow 

Version 9 was the basis for IPFIX, the basic specifications for IPFIX are documented in 

[RFC7011] through [RFC 7015] and [RFC5103]. 

A pool of Metering Processes collects data packets at one or more Observation Points, 

optionally filters them and aggregates information about these packets. An Exporter then 

gathers each of the Observation Points together into an Observation Domain and sends this 

information via the IPFIX protocol to a Collector. Exporters and Collectors are in a many-to-

many relationship: One Exporter can send data to many Collectors and one Collector can 

receive data from many Exporters. 

Like the NetFlow Protocol, IPFIX considers a flow to be any number of packets observed in a 

specific timeslot and sharing several properties, e.g., “same source, same destination, same 

protocol”. Using IPFIX, devices like routers can inform a central monitoring station about their 

view of a potentially larger network. 

IPFIX is a push protocol, i.e., each sender will periodically send IPFIX messages to configured 

receivers without any interaction by the receiver. 

The actual makeup of data in IPFIX messages is to a great extent up to the sender. IPFIX 

introduces the makeup of these messages to the receiver with the help of special Templates. 

The sender is also free to use user-defined data types in its messages, so the protocol is freely 

extensible and can adapt to different scenarios. 

IPFIX prefers the Stream Control Transmission Protocol (SCTP) as its transport layer protocol, 

but also allows the use of the Transmission Control Protocol (TCP) or User Datagram Protocol 

(UDP). 

4.3.2 gRPC 

gRPC is an open-source high performance Remote Procedure Call (RPC) framework that can 

run in multiple environments [GRPC22]. It can efficiently connect services with support for 

load balancing, tracing, health checking and authentication. gRPC was initially created by 

Google, which used a single general-purpose RPC to connect the large number of 

microservices running within and across its datacentres for over a decade. In March 2015, 
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Google decided to build a new version and make it open source. The result was gRPC, which 

is now used in many organizations to power use cases from microservices to the “last mile” 

of computing (mobile, web, and Internet of Things). 

In gRPC, a client application can directly call a method on a server application on a different 

machine as if it were a local object, making it easier for you to create distributed applications 

and services. As in many RPC systems, gRPC revolves around the idea of defining a service, 

specifying the methods that can be called remotely with their parameters and return types. 

On the server side, the server implements this interface and runs a gRPC server to handle 

client calls. On the client side, the client has a stub (referred to as just a client in some 

languages) that provides the same methods as the server. 

gRPC clients and servers can run and talk to each other in a variety of environments and can 

be written in one of the many languages supported by gRPC. So, for example, a gRPC server 

can be developed in Java with clients in Python. 

By default, gRPC uses Protocol Buffers, an open-source mechanism for serializing structured 

data (although it can be used with other data formats such as JSON). 

Synchronous RPC calls that block until a response arrives from the server are the closest 

approximation to the abstraction of a procedure call that RPC aspires to. On the other hand, 

networks are inherently asynchronous and in many scenarios, it is useful to be able to start 

RPCs without blocking the current thread. The gRPC programming API in most languages 

comes in both synchronous and asynchronous flavours. 

Other protocols for configuration manipulation and state retrieval, like gNMI, are built on top 

of gRPC. Within B5G-OPEN, gRPC could be used to interface the several components control 

and data plane architecture such as for enabling topology synchronization in multi-controller 

environment or implement communication between the SDN controllers and the telemetry 

tools.  

4.3.3 Kafka 

Apache Kafka [KAFKA] is an open-source distributed event streaming platform used for high-

performance data pipelines, streaming analytics, data integration, and mission-critical 

applications. Kafka is a distributed system consisting of servers and clients that communicate 

via a high-performance TCP network protocol. Apache Kafka added benefit of data 

persistence, i.e., it combines three key capabilities: 

• To publish (write) and subscribe to (read) streams of events, including continuous 

import/export of data from other systems. 

• To store streams of events durably and reliably.  

• To process streams of events as they occur or retrospectively. 

This functionality is provided in a distributed, highly scalable, elastic, fault-tolerant, and 

secure manner. Kafka can be deployed on bare-metal hardware, virtual machines, and 

containers, and on-premises as well as in the cloud. 

Kafka conforms to a publisher-subscriber architecture. Producers are those client 

applications that publish (write) events to Kafka, and consumers are those that subscribe to 

(read and process) these events. In Kafka, producers and consumers are fully decoupled and 

agnostic of each other, which is a key design element to achieve the high scalability that Kafka 

is known for. 
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Events are organized and durably stored in topics. Topics in Kafka are always multi-producer 

and multi-subscriber: a topic can have zero, one, or many producers that write events to it, 

as well as zero, one, or many consumers that subscribe to these events. Events in a topic can 

be read as often as needed, i.e., events are not deleted after consumption. Instead, you 

define for how long Kafka should retain your events through a per-topic configuration setting, 

after which old events will be discarded. Kafka's performance is effectively constant with 

respect to data size, so storing data for a long time is perfectly fine. 

Topics are partitioned, meaning a topic is spread over a number of "buckets" located on 

different Kafka brokers. This distributed placement of your data is very important for 

scalability because it allows client applications to both read and write the data from/to many 

brokers at the same time. When a new event is published to a topic, it is appended to one of 

the topic's partitions. Events with the same event key (e.g., a customer or vehicle ID) are 

written to the same partition, and Kafka guarantees that any consumer of a given topic-

partition will always read that partition's events in exactly the same order as they were 

written. 

To make data fault-tolerant and highly available, every topic can be replicated, even across 

geo-regions or datacentres, so that there are always multiple brokers that have a copy of the 

data just in case things go wrong, owner wants to do maintenance on the brokers, and so on. 

A common production setting is a replication factor of 3, i.e., there will always be three copies 

of the data. This replication is performed at the level of topic-partitions. 

4.3.4 Logstash and Elastic Search 

Logstash [Logstash] is an open server-side data processing pipeline that ingests data from a 

multitude of sources, transforms it, and then sends it to any repository. The Logstash event 

processing pipeline has three stages: inputs → filters → outputs. Inputs generate events, 

filters modify them, and outputs ship them elsewhere. Inputs and outputs support codecs 

that enable to encode or decode the data as it enters or exits the pipeline without having to 

use a separate filter. 

Elasticsearch [Elasticsearch] is a search engine that provides a distributed, multitenant-

capable full-text search engine with an HTTP web interface and schema-free JSON 

documents. It provides scalable search, has near real-time search, and supports 

multitenancy. Elasticsearch tries to make all its features available through the JSON and Java 

API. It supports faceting and percolating (a form of prospective search), which can be useful 

for notifying if new documents match for registered queries. Another feature, "gateway", 

handles the long-term persistence of the index; for example, an index can be recovered from 

the gateway in the event of a server crash. Elasticsearch supports real-time GET requests, 

which makes it suitable as a NoSQL datastore, but it lacks distributed transactions.  

4.3.5 InfluxDB, Telegraf, and Grafana 

InfluxDB [InfluxDB] is a high-performance time series engine designed to handle high write 

and query loads. InfluxDB is meant to be used as a backing store for any use case involving 

large amounts of timestamped data, including DevOps monitoring, application metrics, IoT 

sensor data, and real-time analytics. Some of the features that InfluxDB currently supports 

are: 

• Custom high performance datastore written specifically for time series data. 

• Written entirely in Go. It compiles into a single binary with no external dependencies. 
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• Simple, high performing write and query HTTP APIs. 

• Expressive SQL-like query language tailored to easily query aggregated data. 

• Tags allow series to be indexed for fast and efficient queries. 

• Retention policies efficiently auto-expire stale data. 

• Continuous queries automatically compute aggregate data to make frequent queries 

more efficient. 

Telegraf [Telegraf] is an agent for collecting, processing, aggregating, and writing metrics. It 

is based on a plugin system to enable developers to easily add support for additional metric 

collection. There are four distinct types of plugins: 

• Input Plugins collect metrics from the system, services, or 3rd party APIs 

• Processor Plugins transform, decorate, and/or filter metrics 

• Aggregator Plugins create aggregate metrics (e.g., mean, min, max, quantiles, etc.) 

• Output Plugins write metrics to various destinations 

Grafana [Grafana] is a multi-platform open-source analytics and interactive visualization web 

application that provides charts, graphs, and alerts for the web when connected to supported 

data sources. End users can create complex monitoring dashboards using interactive query 

builders. As a visualization tool, Grafana is a popular component in monitoring stacks, often 

used in combination with time series databases, monitoring platforms, and other data 

sources. 

Grafana comes with a plethora of features that provide value straight out of the box: 

• Visualization: Grafana possesses a huge variety of visualization options to help you 

view and understand your data easily. These options are split into “panels” which are 

then used to build the Grafana dashboard. A panel is the most granular visualization 

building block in Grafana, and is used to display data that has been queried from the 

data source attributed to that panel. This information is being pulled from the data 

source attributed to that panel and can be a type of graph (gauge, histogram, bar 

chart, etc.), or logs and alerts.  

• Alerting: When monitoring applications, it is essential to be made aware the second 

something goes wrong, or is abnormal. This is vital to keeping your systems healthy 

and reducing downtime. Grafana has built-in support for a huge number of 

notification channels, e.g., email, REST endpoints etc. 

• Annotations: Grafana allows leaving notes directly on graphs. This simple but 

powerful feature provides a way to seamlessly mark important points on graphs. This 

serves as a reminder for further action in the future, to provide context to an 

onboarding team member, or to simply mark a special event on your graph. 

4.4 ORCHESTRATION   
The Network Function Virtualization (NFV) concept enables the full automation of many 

processes that were previously manual, slow, and expensive. NFV is an indispensable 

component in 5G services, available in mobile and fixed access networks. In this context, the 

Network Function Virtualization Orchestrator (NFVO) is responsible for managing the 

Network Service (NS) life-cycle, orchestrating Network Function Virtualization Infrastructure 

(NFVI) resources, and optimizing the resource allocation and service connectivity. These 

resources are managed to offer high availability, the agility to swiftly deploy new services, 
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and unlock the full potential of virtualization of network functions: scaling, faster deployment 

of services, simplified operations.  

The NFVO system interacts with a number of other elements, Figure 4-1 shows a typical 

application scope. The main frameworks for NFVO are reviewed below: Open Source MANO 

(OSM), Open Network Automation Platform (ONAP), as well as other container-based 

alternatives. 

 

Figure 4-1 NFV Orchestration scope (source: [Mamu19]) 

4.4.1 OSM 

Open-Source MANO (OSM) [OSM] is an open-source NFV manager and orchestrator of 

software stacks for NFV architecture developed by ETSI. OSM enables an ecosystem between 

operators and vendors to deliver and deploy services cost-effectively. The main architecture 

modules of OSM are (see Figure 4-2): 

• User interface (UI) allows the OSM’s service management as Launchpad module an 

interactive graphical interface. The main functions are: 

o Present NF and NS run-time statistics.  

o Detailed view of computing and network topologies.  

o Access credential management for VIM environments. 

• Service Orchestrator (SO) manages the workflow via OSM. The main objectives are: 

o Life-cycle management and primitive execution of the service.  

o Project and user support.  

o NS and VNF life-cycle operation (CRUD) 

• Resource Orchestrator (RO) is responsible for resource management and 

coordination from multiple VIMs or SDN controllers.  

• VNF Configuration and Abstraction (VCA) sets the initial VNF design and enables the 

actions, configurations, and notifications from iterations between VNFs.  

• Network Service to VNF Communication (N2VC) is a key module managing the 

communication between the SO and VCA modules.  
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• Kafka bus enables a new channel for asynchronous communication between all the 

components and eases the OSM integration with new modules (see Figure 4-3).  

• Virtual Infrastructure Manager (VIM) is a fundamental element in MANO 

architecture, but it is not present in the OSM stack. Instead, OSM is open to integrate 

with main ones like OpenVIM, VMWare vCloud Director, Amazon Web Services, and 

OpenStack.  

• Monitoring (MON) integrates the monitoring tool according to the project 

requirements and OSM architecture.  

• Northbound Interface (NBI)  

• Policy Manager (PoM) to add notifications where a new metric or alarm is relevant 

to the MON module. 

 

 

Figure 4-2 OSM Modules (source: [OSMRel4]) 

 

Figure 4-3 OSM life-cycle management for a new dedicated channel for asynchronous communications between 

components (source: [OSMRel4]) 
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OSM has been successfully used in a number of European projects like MetroHaul [MHEC], 

5G-CrossHaul [5GCH] to name a few, and has a fair support by the community. As drawbacks, 

OSM complexity and steep learning curve makes it less attractive. Additionally, its support of 

lightweight containers, a major driver in 5G/6G infrastructures, is not as complete as other 

alternatives.  

4.4.2 ONAP 

Open Network Automation Platform (ONAP) [ONAP] is an open-source software platform 

developed under the Linux Foundation that enables the design, creation, and orchestration 

of services on the infrastructure layer sitting on top of individual VNF or SDN, or a 

combination of both. The main goal is to address efficient provisioning and end-to-end 

infrastructure management serving up on-demand services and optimizing the automation 

of the associated processes using big data and Artificial Intelligence (AI) [Mam19]. ONAP 

environment consists of two major architectural frameworks: design-time environment and 

execution-time environment (see Figure 4-4) [Sli17].  

• The design-time environment is a development environment with functions and 

libraries needed for the development of new capabilities. It entails a visual tool for 

the design and modelling of assets used in ONAP components with a subsystem to 

make policies and conditional rules. The design-time environment has the following 

subcomponents:  

o Service Design and Creation (SDC) is an environment that describes based on 

multiple levels of assets how VNFs or services are managed, including 

resources and services requirements.  

o Policy Creation is an ONAP subsystem that contains a set of control rules, 

orchestration and management policies. The VNF placement rule specifies 

where VNFs should be placed according to the constraints.  

• The execution-time environment is an environment to execute the policies and rules 

prepared in the design-time environment. The policies and rules are responsible for 

data collection, analytics, and resource inventory. This environment includes service 

orchestration for end-to-end service automation, performance monitoring, and 

security based on Enhanced Control, Orchestration, Management & Policy (EOCMP). 

The main modules are:  

o Active and Available Inventory (AAI): This is continually updated to provide a 

real-time view of the topology underlying the available resources.  

o Controllers: One controller manages the state of a single resource. ONAP 

uses multiple controllers to execute resource configuration and instantiation 

to configure the network and manage VNFs. On the other hand, the 

Application Controller manages more complicated VNFs and services. Finally, 

the Infrastructure controller orchestrates and manages the resources within 

the local or cloud infrastructure.  

o Master Service Orchestrator (MSO): It handles capabilities of end-to-end 

service provisioning from the top level.  

o Data Collection, Analysis, and Events (DCAE): The main role is the telemetry 

data collection from VNFs to detect network anomalies and determine the 

corrective actions. 
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Figure 4-4 ONAP system (source: [Slim17]) 

Similarly to OSM, and even more, ONAP software has become a very complex software suite, 

difficult to manage and deploy. It has a growing community, and an increasingly better 

documentation quality. Still, the learning curve is also steep, which is hindering its adoption.  

 

4.4.3 Alternatives based on containers 

In recent years, a growing interest exists in the industry for the exploration of simpler NFVO 

strategies, based on smaller and well-known frameworks with well-defined APIs and 

interactions, instead of large monolithic software suites like ONAP or OSM. In this line, the 

Container Orchestration Engines (COE) [ETSI19] are specialized tools, which are capturing the 

industry attention as a simpler form to address the NFV and on-demand application 

deployment and scaling needs. 

COEs automate the containers' deployment, management, scaling, and networking over a 

cluster of computers by an API for life-cycle management, schedule the containers based on 

available resources and needs. Its key role: automating in a simple form the painful 

management of the container life-cycle when its number increases dynamically with 

demand.  

The most popular and widely adopted option is Kubernetes [Red22]. Below  key aspects of 

Kubernetes will be reviewed, as well as Open Baton, an (also open-source) alternative, 

connected to the ETSI NFV MANO umbrella. 

4.4.3.1 Open Baton 

Open Baton [OpenBaton] is an open-source platform that presents a comprehensive 

development of the ETSI NFV MANO specification for virtual network infrastructures (see 

Figure 4-5). This tool ports, adapts, manages, and orchestrates the network functions in a 
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specific network environment to improve the performance and grant security of the overall 

infrastructure. This solution can provide on-demand complete virtualized infrastructures 

such as IaaS or PaaS enabling the elastic deployment of cost-efficient network 

infrastructures. The main components are:  

• A generic VNFM and generic EMS to manage the VNF life-cycle based on their 

descriptors. 

• Many VNFM drivers to select. 

• Multi-VIM without having to re-write the orchestration logic.  

• Event mechanism based on pub/sub mechanism for dispatching the execution of the 

life-cycle events.  

• Autoscaling engine for automatic runtime management of scaling operations of the 

VNF.  

• Fault management system at any level.  

• Monitoring system based on Zabbix  

• Network slicing to ensure a specific QoS for the NS.  

• Set of libraries (Java, Go, and Python) for building your VNFM  

 

Figure 4-5 Open Baton Components (source: [OpenBaton]) 

 

 

Open Baton has been chosen in a number of research projects as NUBOMEDIA [Nubomedia] 

Mobile Cloud Networking [MCN] and SoftFIRE [SoftFIRE], exploring its application in different 

5G/6G contexts. The official Open Baton online documentation [OpenBaton] includes the 

User Tool section with information related to Dashboard, CLI, SDKs and REST APIs. Nowadays, 

Open Baton is an attractive platform but is not widely adopted by the industrial or 

researching community in contrast to Kubernetes. 

4.4.3.2  Kubernetes 

Kubernetes (K8s) [K8s] is an open-source platform for container orchestration developed by 

Google in 2014 with virtualization orchestration in mind. The main functions are automated 

arrangement, coordination, and cluster management of containerized applications. 

Kubernetes becomes extremely useful and powerful as a solution for most challenging 
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functionalities (service discovery, load balancing, health checks, auto-scaling containers, 

nodes, etc.).  

Kubernetes is portable, configurable, modular, and offer features like container auto-

placement, auto-restart, auto replication, and auto-healing. The main element of Kubernetes 

are [Chifor17]: 

• Master node assures everything is running with multiple controllers in charge of the 

cluster health, replication, scheduling, endpoints (Services and Pods), Kubernetes 

API, etc. This node is present in a separate virtual machine in the same physical host. 

• Worker node runs the Kubernetes agent and is responsible for running Pod 

containers, mounts Pod volumes, does health checks, and reports the Pods and the 

node status to the rest of the system. 

• Pod is the smallest and simplest unit in the Kubernetes model, represents a running 

process in the clusters, and contains one or more containers. 

• Deployment provides declarative updates for Pods and ReplicaSets. 

• DaemonSet ensures that the nodes run a copy of a Pod (nodes added/removed to 

the clusters, Pods added/garbaged to them). 

• ReplicaSet is a controller that ensures a specified number of Pods replicas running at 

any given time. 

• Service is an abstraction that defines a logical set of Pods and a policy to access them. 

It exposes the Pods to other services within the cluster or externally. 

For B5G-OPEN, the benefits of Kubernetes are: 

• Its specialized focus on the use of lightweight containers, the ideal mechanism to 

host the microservice-based applications, a clear industry trend, where each 

application can be composed of tens of containers. 

• In contrast to all other platforms, the Kubernetes concept is simple with 

sophisticated code and documentation. It exports a REST-based API, to efficiently 

handle the resource lifecycle. 

• Kubernetes is also an enabler for the so-called serverless approach [Moh19]. The 

idea under such strategy includes a diverse set of techniques, which pursue 

simplifying even further the development and lifecycle management of micro-

service-based applications. For instance, Amazon AWS offer as a serverless function, 

the so-called lambda-service. This permits the user the definition of Zero-touch 

functions (lambdas) that are e.g., independent AWS containers without management 

tasks. In this form, more and more of the management burden would be actually 

handled by the cloud provider. In conclusion, Kubernetes would open the door to 

exploring the advantages of serverless approaches in the network operation 

architecture.  

4.5 QOT ESTIMATION TOOLS 
 

As a fundamental initial hypothesis of B5G-OPEN, optical transmission exploiting multiple 

optical bands is the most promising solution in the context of wavelength routed networks 

that increases network capacity without compromising network node connectivity and 

without exhausting the operator’s deployed fibre reserves. A disaggregated, vendor-
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agnostic, optical multi-band transport ecosystem is necessary to ensure the cost-effective 

deployment of these systems, which are facing considerable challenges in physical network 

design and network planning: in an OMB system, physical layer phenomena impose 

additional and complex performance limitations. Additionally, highly desirable features are 

network automation and interoperability by means of open interfaces and an SDN-enabled 

control/management framework. Such interfaces and frameworks are not currently 

designed with multi-band support, which poses additional challenges. It is necessary to 

develop modular SDN architecture where a physical layer impairment aware (PLA) routing 

engine and QoT estimation tools can be used for use cases such as path validation and path 

computation, ideally relying on open interfaces and standard data models extended for such 

purpose. 

4.5.1 GNPy  

GNPy is an open-source, community-developed library for building route planning and 

optimization tools in real-world mesh optical networks [GNPY]. The project is driven by a 

consortium of operators, vendors, and academic researchers sponsored via the Telecom Infra 

Project's OOPT/PSE working group, building as tool for rapid development of production-

grade route planning tools which is easily extensible to include custom network elements 

and performant to the scale of real-world mesh optical networks. 

GNPy can act as a Path Computation Engine, tracking bandwidth requests, or advising the 

SDN controller about a best possible path through a large DWDM network. For example, it 

takes into account detailed models of data plane devices and optical fibres to provide an 

accurate estimation of the quality of transmission reachable along a specified path. 

4.5.2 OLC-E Tool 

The OLC-E tool is used either as a stand-alone planning tool or as the main element of a Path 

Computational Engine (PCE). The OLC-E tool, as detailed in [UZU21], it is based on a multi-

band routing engine which ensures that: i) routing is implemented by means of an efficient 

spectrum and modulation-format assignment; and ii) the impact of physical layer effects over 

the selected optical paths is estimated and the results are benchmarked against QoT target 

values (BER, OSNIR, OSNR, etc). In this way, the planning tool ascertains the conditions that 

maximize the total capacity of the network while it minimizes the global blocking probability. 

This task is completed in the three stages as follows: 

STAGE - I: Network Topology Implementation: the network topology is defined by setting the 

connectivity pattern between the nodes and the traffic matrix. Next, the k-shortest paths for 

all network node pairs are derived. More specifically, in this step, the following quantities are 

defined: the network topology including nodes, edges and amplifiers, the available optical 

bands, the capacity per band, the traffic matrix, the average time duration of the demands 

and the average inter-arrival time between two consecutive demands, as well as the available 

line-rates and their distribution on the demands. 

STAGE – II:  Spectral and Modulation Assignment (SMA) and PL entanglement: the operation 

is completed in two steps: In the first step, i) a preliminary spectrum and modulation format 

assignment (SMA) is made for a number of the k-shortest paths, and ii) the Optical Signal to 

Noise plus Interference Ratio (OSNIR) for these shorter paths is estimated taking into account 

the impact of the physical layer effects by means of closed-form expressions.  



 D4.1 GA Number 101016663 
 

27 

 

In the second step, the Optical Multi-band Physical Layer Aware Routing Modulation and 

Spectral Assignment (OMB-PLA-RMSA) algorithm either selects or rejects a lightpath. A path 

is rejected if a) no continuous spectral slots are available in any optical band to support the 

end-to-end connection, b) either the OSNIR of the candidate lightpath falls short of the QoT 

estimator threshold or the OSNIR of at least one of the already established lightpaths would 

perform below the QoT threshold due to the presence of this candidate lightpath. In either 

(a), (b) cases, the rejected lightpath is assigned the next available path from the sorted list of 

k-shortest paths and it is then re-iterated. If these paths are all rejected, the first step is 

repeated using a lower cardinality SMA values. If no path is retained, the engine registers a 

blocking condition. 

 STAGE – III: Path Allocation: This is the stage where the lightpaths are established in the 

network. The final assessment on network’s throughput is completed and a lightpath is 

successfully set if contiguous spectral slots are available over the end-to-end transparent 

path with acceptable physical layer performance (above the QoT estimator threshold). The 

successful establishment of a lightpath triggers the update of the corresponding arrays for 

each link of the path, e. g., arrays of power, modulation format, consumed frequency slots.  

With the aid of the notations and the parameters listed in Table 4.1, the implementation of 

the multi-band routing engine is as below: 

 

Table 4.1: Variables and parameters used in the multi-band routing engine. 

Variable Description Variable Description  

G network topology graph ds source of demand d  

N set of network nodes dn destination of demand d  
E set of bidirectional optical fibre links 

(edges) 

dt duration of demand d  

A Set of amplifiers in the network  dlr Requested line-rate for demand d  

B set of active optical bands k number of shortest paths used in 

Yen's algorithm 

 

CB set of available frequency slot units - 

FSUs for each optical band in the set 

B  

K set of k-shortest paths calculated 

using Yen's algorithm 

 

T Input traffic matrix  pc candidate path assigned to 

demand d 

 

D set of demands in increasing time of 

arrival order 

rc candidate transmitter type 

assigned to demand d 

 

Dt average time duration of the 

demands 

fc candidate set of FSUs assigned to 

demand d 

 

Di average inter-arrival time between 
two consecutive demands 

pa final path assigned to demand d  

LR set of available line-rates ra final transmitter type assigned to 

demand d 

 

RB set of available transmitter types for 

each optical band in B, in increasing 

required FSU order 

fa final set of FSUs assigned to 

demand d 

 

r transmitter type (macroscopic 

parameters) 

wa final transmitter power for 

demand d 

 

rd Maximum reach of a transmitter type 

r  

St total simulation time  

rf number of consecutive FSUs 

consumed per transmitter type r 

t current simulation time  

d One particular traffic demand 

(source-destination) 

drt boolean, TRUE if demand d is 

routed, FALSE otherwise 

 

 

 

INPUT: Network topology including nodes, edges and amplifiers G(N, E, A). Define the optical bands B engaged. Definition 
of the capacity CB per band. Definition of traffic matrix T. Average time duration Dt of the demands and average inter-arrival 
time Di between two consecutive demands. Definition of the available line-rates LR and their distribution on the demands. 
Stage 1: Network Topology Implementation: 
1:  for all 𝑛𝑖 ∈ 𝑁 do 
2:    for all 𝑛𝑗 ∈ 𝑁 do 

3:      Compute k shortest-paths using the Yen's algorithm and store the  results to K(ni,nj) 
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4:    end for 
5:  end for 
6:  t=0 
7:  while t< St    
8:    Generate a new demand d; Add d to D; 
9:  end while 
Stage 2A: Spectral and Modulation Assignment (SMA) and PL entanglement: 
10:  while D is not empty do 
11:    Consider the first demand 𝑑 ∈ 𝐷; 
12:    Bd=B; Kd=k-shortest paths from ds  to dn in K(ni,nj); drt=false; 
13:    while Bd is not empty AND drt=false do 
14:      Consider the first band 𝑏 ∈ 𝐵𝑑; 
15:      while Kd is not empty AND drt=false do 
16:         Consider the first path 𝑝𝑐 ∈ 𝐾𝑑; 
17:         Calculate the set of r ∈ 𝑅𝐵 denoted as Rd assuming band b and line-rate dlr; 
18:          for all 𝑟 ∈ 𝑅𝑑  do 
19:             if (rd < pc distance) 
20:                Remove r from Rd; 
21:            end if 
22:          end for 
23:          while Rd is not empty AND drt=false do 
24:            Consider the first rc ∈ 𝑅𝑑 assuming band b and line-rate dlt; 
25 :           while FSUi < Cb AND drt=false do 
26:             Calculate the next available set of FSUs FSUn in the path pc starting from FSUi using the First Fit (FF) route algorithm  
27:                  if (route found in FF)             

Stage 2B: Physical Layer Performance: 

28:                    Execute Physical Layer Check (PLC) using Path OSNIR 

29:                    if PLC == true 
30:                      Assign the demand using Path Allocation (d,b,pc,dbw); 

31:                    end if  

32:                  end if 

33:             end while; Remove rc from Rd; 

34:          end while; Remove pc from Kd; 

35:      end while; Remove b from Bd; 
36:    end while 

37:    if (drt=false) 

38:      Block demand d; 
39:    end if 

40:  end while 

Stage 3: Path Allocation: 

41:  Allocate path pa= pc in the network; 

42:  Allocate set of frequency slot units fa=fc in the optical band b across the path pa in the network; 

43:  Allocate transmitter ra=rc across the path pa in the network; 
44:  Set wa as the power of transmitter ra; 

OUTPUT: Utilisation of frequency slot units, finalisation of modulation format for a given line-rate, the consumed optical 

band and the power channel for all demands in the set D. 
 

 

 

The OLC-E tool (v1.0) has the following features: 

• The physical layer performance is estimated via closed-form expressions something 

that allows to get the results in real-time. In particular, the OLC-E tool admits, 

assesses, and routes thousands of call set-up requests within the timeframe of few 

minutes. Moreover, the OLC-E tool (v1.0) has integrated an advanced power 

optimization methodology that allows to tailor the physical layer performance of 

each optical band according to the high-level objectives set by the network operator 

as, for example, whether the operators wish all optical bands to have the same 

optical reach or whether the optical reach of a band (or bands) is higher at the 

expense of the optical reach of other bands.. Examples of such optimizations are 

detailed in D3.1. 

• It supports both transparent and translucent modes of operation. In the latter mode, 

a path that is rejected during STAGE-II, it is re-iterated via the “Path-Split Routine” 

which allows to split a rejected transparent optical path in two shorter-length 

transparent paths with full o/e regeneration at an intermediate node. After this 
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implementation, the two shorter length paths may exploit a higher cardinality SMA 

and/or a lower symbol-rate source, which are, possibly, independently selected in 

the two paths. This way, the total number of optical slots consumed in the two 

independent paths are reduced alleviating blocking due to spectral unavailability. 

Similarly, higher line-rates might be employed in the two shorter-length paths that 

reach the QoT threshold that otherwise might be unattainable. 

The flowchart illustrated in Figure 4-6 summarizes the logical implementation of the OLC-E 

tool. 
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Figure 4-6 The flow chart of the OLC-E’s multi-band routing engine.  



 D4.1 GA Number 101016663 
 

31 

 

5 OVERVIEW OF B5G-OPEN CONTROL, ORCHESTRATION, AND 

TELEMETRY 

The B5G-OPEN control, orchestration, and telemetry system (often referred to as the control 

plane, for short) is the software systems that provides the ability to provision, dynamically 

and upon demand, B5G and 6G services, as presented in the previous sections. 

The following sections macroscopically present the functional architecture of the B5G-OPEN 

control plane, initially targeting single domain networks, which was initially proposed in 

Milestone M4.1 and will be refined along the project execution. This section presents, 

macroscopically, the most relevant elements of the architecture. The different functional 

elements (often referred to as components) are identified for the purposes of service 

orchestration and device configuration (incl. resource control).  

5.1 MAIN INNOVATIONS AT THE B5G-OPEN CONTROL PLANE 
The main innovations for the control plane of B5G-OPEN are: 

- [multiband control] Control of optical multi-band network, this means being able to 

exploit the multiband capabilities of optical devices such as transmission (Tx) 

elements – transceivers) or switching (multi-band ROADMs).  

This is detailed in Section 6, showing the B5G-OPEN approach.  

 

- [transparent multi-domain, domain-less] The ability to setup connections in a 

transparent manner, across multiple domains and network segments. This is 

exemplified in the “multi-OLS” scenario, in which different optical line systems are 

interconnected without a O/E/O conversion. There is a systematic need to extend 

SDN principles to networks composed of multiple domains and technological layers, 

significantly more complex than single domain networks due to the lack of detailed 

and global topology visibility. The division into domains is driven by factors such as 

scalability limitations, confidentiality requirements, or interoperability issues, and 

the conception of scalable, efficient reliable, and trustable systems for the 

provisioning of end-to-end services.  

This is covered in Section 6, as well as considerations regarding Access Segment 

integration elaborated in Section 7 as well as considerations regarding integration 

with IT (computing, storage) and orchestration in Section 8. 

 

- [Packet/optical integration] the evolution from discrete optics towards pluggable 

interfaces is also challenging the design of the control plane which, to a large extent, 

has considered the control plane of the IP/MPLS layer largely decoupled from the 

control plane of the optical layer. Current architectures for the SDN control plane of 

the transport network consider the scope of the control limited to transceiver to 

transceiver and the tunability of the transceiver was directly under the control of the 

optical SDN controller and multi-layer networking was commonly accomplished 

typically with a hierarchical arrangement of controllers (a packet controller and an 

optical controller under the orchestration of a parent controller). This is addressed 

in B5G-OPEN, considering multiple options including exclusive or concurrent control. 
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This, along with control of multiband networks, is a critical innovation of B5G-OPEN. 

A dedicated section is provided (Section 9)  

 

- [physical layer impairments, PLI] accounting for PLI is critical to efficiently plan and 

operate optical networks and high data rates, with increasing non-linear effects. 

When considering the extension to wide-band, such parameters can be specific to 

certain frequency bands and one can no longer assume uniform channel behaviour. 

Until recently, there has been a lack of common, standard, and open data models for 

physical impairments, a domain where it has been difficult to reach a wide 

consensus. Current systems need to interop with heterogeneous monitoring info 

sources and proprietary and costly simulation tools are difficult to interop or 

integrate. The new opportunities associated to the development of planning, 

validation, and path computation tools such as the Open-Source GNPy or Net2Plan 

has once again shown the importance and role of standard and open interfaces. The 

challenge is then two-fold: how to integrate such third-party, externalized tools and 

from a modelling perspective, how to extend current network and service models to 

account for PLI. This includes a finer characterization of transceivers operational 

modes, which characterize a given transceiver’s different transmission modes 

including aspects such as bit/baud rate, FEC or modulation formats, as is being done 

in OpenConfig manifests, IETF operational mode characterization or TAPI transceiver 

profiles. Additionally, further work is required to model optical fibers – including the 

selection of a relevant sent of parameters --, amplifier functions e.g., in terms of 

parameters such as wavelength dependent gain, operation mode, noise figure as 

well as network elements such as ROADMs. Finding the right abstraction level, where 

a given model can be applied to a multiplicity of devices from different providers is 

challenging.  

 

- [telemetry] The scope of the SDN no longer covers exclusively device / system 

control and configuration aspects but extends to optical monitoring and telemetry, 

a key enabled for advanced functions such as autonomous/autonomic networking 

via hierarchical and coordinated closed loops. Streaming Telemetry protocols and 

architectures such as gRPC/gNMI are increasingly being used to export telemetry 

data from devices, providing flexibility in the definition of streams, filtering, and use 

cases. Telemetry architecture is detailed in Section 10. 

 

- [external planning tools] Planning tools, including QoT estimators or path 

computation and validation systems need efficient access (in terms of retrieval, 

storage and processing) to collected and managed data. Algorithm inputs need to be 

modelled in an efficient and scalable way, defining dynamic workflows with 

controlled and minimized impact on service provisioning latency. Algorithmically, 

functional elements dedicated to generalized Routing and Spectrum Assignment 

(RSA) or function placement are needed and are expected to operate in hybrid off-

line/on-line modes, e.g., dynamically, used to compute/validate e.g., OTSi services 

over specific bands with satisfactory QoS/QoT. In this sense, further work is needed 

to have a unified short-term provisioning and long-term network-planning using a 

single software framework. Such systems need to scale in complexity. The fact that 

data is heterogenous and covers multiple application domains renders the 
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development of placement algorithms of orchestrator schedulers that need to 

retrieve network information from multiple layers and domains extremely complex.  

 

- [network automation] Aspects related to automation, zero touch networking and 

Intent Based Networking (IBN) are developed in the areas of service deployment, 

network planning and overall network operation. Outcomes related to automation 

in single domains and later cross-domain automation (across technology layers or 

network segments).  

 

Such aspects are elaborated on in Section 11. 

 

5.2 INITIAL ASSUMPTIONS ON OPTICAL DEVICE CONFIGURATION AND CONTROL 
The definition of the architecture relies on a set of initial assumptions, namely that the 

devices are client agnostic (they export several configuration endpoints, based on separation 

of concerns, functionality, or administrative assignment), export several telemetry 

endpoints, with same considerations since configuration and Telemetry endpoints may have 

different access requirements, visibility, and interfaces should be homogeneous. For devices 

that export multiple configuration endpoints, it is expected that the scope of each endpoint 

is clearly defined, and/or side effects are well-known (i.e., no overlapping models). 

The architecture (reflected in Figure 5-1) is defined targeting two main models: i) partial 

disaggregation with a 2-level control hierarchy, where there is a dedicated OLS controller, 

responsible for the ROADM and ILA nodes (note that ROADM/ILA nodes MAY export other 

interfaces (e.g., streaming telemetry) towards other entities, and ii) Full Disaggregation, with 

a single SDN controller. Both models may include additional functional elements, notably in 

support of path computation, resource allocation, or function placement.  

As addressed in the previous section, the control plane architecture assumes several key 

services, such as the provisioning of DSR or Media Channel connectivity services and 

contemplates two main blocks: Multi-band Optical Network SDN control and Domain 

Telemetry Collector. The MB Optical Network Control is fully decomposed on TAPI adapter, 

Path Computation Servers and Optical Controllers (e.g., in the case of partial disaggregation 

additional OLS controllers will be considered). For the packet domain, different options are 

addressed. Packet controllers can cover one or multiple packet domains and rely on pure 

SDN (e.g., P4) or hybrid SDN/IP in which the SDN control plane is mostly used to configure IP 

processes running in the packet/optical boxes. In the case of multi-OLS scenarios, B5G-OPEN 

will consider B2B deployments with Transparent Configuration. 
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Figure 5-1 B5G-OPEN Control, Orchestration and Telemetry architecture. 

5.3 SERVICE ORCHESTRATION AND PLANNING 
Aspects related to Service orchestration for provisioning, planning, or network analysis are 

responsibility of the Service Orchestrator (referred to as the B5G-ONP). Such element sits on 

top of the Kubernetes controller, the SDN controllers and the Domain Telemetry collector. 

5.4 OPTICAL PACKET INTEGRATION  
This section overviews the control plane assumptions related to Optical and Packet 

integration, on top of which the different control plane architectural solutions (e.g., 

exclusive, concurrent) can be defined. B5G-OPEN will focus on the concurrent solution, in 

which different controllers can have access to the packet / optical nodes. This is driven by 

criteria related to implementation simplicity, but it does not mean that the other solutions 

are not appropriate. 

In either case, the data plane assumes pluggable interfaces in the packet / optical nodes, 

there is no discrete optical element.  

5.4.1 Campus Mode 

In the Campus mode (Figure 5-), packet forwarding is based on P4 runtime.  Consequently, 

the SDN controller for the packet layer is responsible for configuring flow forwarding as 

defined by the P4 standard documents. 
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Figure 5-2 Packet/Optical integration (campus / p4 modes) 

5.4.2 Telco Mode 

In the telco mode, it is assumed that packet/optical nodes are actually IP routers and that 

there are one or more routing processes (e.g., BGP / OSPF) running on the node. SDN 

applicability in this mode mainly refers to the fact that actual configuration of the routers is 

driven by the SDN controller (see Figure 5-). 

 

 

Figure 5-3 Packet/Optical integration (telco / router modes) 

5.5 TELEMETRY AND INTENT BASED NETWORKING 
The domain telemetry collector architecture has also been defined (see Figure 5-). It involves 

a Telemetry Manager with its own repository as well as telemetry agents that sit on different 

elements, using the REDIS database. Intent Based Networking Applications implement 

Knowledge Sharing and rely on the services offered by the different functional elements. 
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Figure 5-4 B5G-OPEN Control and Orchestration architecture 

Finally, the B5G-OPEN architecture operates service and network operations from the Access 

Point to the Cloud node, which might include monitoring and AI/ML. Based on Intent-based 

(IBN) and zero-touch networking paradigms, autonomous operation is built using closed-

control loops at various levels, from device to network. Empowered by a distributed AI/ML-

based engine providing data collection and intelligent aggregation, analysis, and acting on 

the network devices, autonomous operation enables coordinated decision-making across 

domains. This is shown in Figure 5-5. 

 

Figure 5-5 B5G-OPEN Intent Based Applications (IBN) and Knowledge-Sharing. 
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6 SDN CONTROL OF OPTICAL MULTIBAND NETWORKS 

6.1 INTRODUCTION 
The “optical control” part of B5G-OPEN refers to the control of the transceivers devices and 

the optical line system. B5G-OPEN considers two different approaches within a disaggregated 

system: a fully disaggregated (with visibility of the underlying devices) and partially 

disaggregated. In this case, the SDN control plane for partially disaggregated networks 

follows a hierarchical arrangement of controllers, in which a first level control-plane 

disaggregates the transceivers from the OLS. A second level, the OLS controller is responsible 

for provisioning (Network) Media Channels (MCs/NMCs) between client ports and for 

configuring ROADM devices and any other applicable device in the optical path.  

 

Figure 6-1 Control Plane of Partially Disaggregated Optical Networks with OLS controller 

In specific scenarios, SDN agents are deployed at each node, which, in turn, acts as local node 

controllers to configure the different devices (devices are in most cases exposing an SDN 

device API). When considering “open interfaces” the interfaces towards the individual 

devices under the control of an OLS controller are commonly not exported and the visibility 

for higher (e.g., client) applications is limited. In a partially disaggregated system, there are 

not necessarily SDN agents in the ROADM nodes, as they are configured by the OLS controller 

using proprietary (non-SDN) interfaces. There may additionally be device SDN API on the 

ROADM devices for per-device configuration and PM monitoring / streaming telemetry. 

6.2 TAPI-ENABLED OPTICAL NETWORK ORCHESTRATOR (TAPI NORCH) 
The TAPI-enabled Optical Network Orchestrator is a functional element of the architecture 

that is responsible for the following functions: 

- Providing a uniform, open and standard view and interface to the higher levels and 

components of the B5G-OPEN control, orchestration, and telemetry system. 

- Compose a complete Context to be consumed by B5G-OPEN network planner and 

additional consumers combining information retrieved from subsystems and sub-

controllers (Optical Controller, external databases, monitoring systems, etc). 

- Enable single entry point for provisioning DSR and Photonic Media services, including 

externalized path computation. 
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- Provide an event telemetry data source that reports events that happen 

asynchronously in the network. 

6.2.1 Interfaces 

By design, the TAPI Optical Network Orchestrator is an SDN Controller that exports a standard 

NBI, (based on the standard ONF TAPI interfaces) while orchestrating and coordinating 

multiple delegated systems, such as the Optical SDN controller, as well as multiple sources 

of physical impairment information.  

- The interface from the TAPI Optical Network Orchestrator to the optical controller 

will be based on the ONOS native interface, extending the existing implementation 

to support additional requirements and use cases  

It is also responsible for performing path computation to the Optical Path Computation 

Element (OPCE), running in a dedicated Path Computation Server or as part of a planning 

software, while also using an open and standard interface for such purpose. 

- The interface from the TAPI Optical Network Orchestrator to path Computation 

engine will be based on a specific instance of path computation interface defined in 

TAPI. 

- Additional interfaces will be defined to support the augmentation of topological 

elements with physical layer information data. 

From an architectural perspective, the TAPI Optical Network Orchestrator (see Figure 6-2) 

abstracts the optical controller and path computation entities from the upper layers (notably, 

B5G-OPEN planner and orchestrator). 

 

Figure 6-2 Transport API (T-API) Optical Network Orchestrator with the BG5-Open control plane functional 

architecture, showing the usage of an externalized path computation function 
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The core of the TAPI Optical Network Orchestrator controller is an asynchronous event loop 

(see Figure 6-3). On the one hand, it exports multiple services via its multiple North Bound 

Interfaces (NBI) to users or clients, using RESTCONF/YANG. The most relevant services are 

Topology Management, Connectivity Service Management and Path Computation.  

The RESTCONF server is responsible for processing requests using the RESTCONF protocol. 

The planned Yang models are a subset of the ONF TAPI v2.1 Requests are mapped to internal 

structures and processed by functions in the event manager. The OLS controller is a multi-

threaded application, written in C++ (C++20). It targets GNU/Linux systems (e.g., Ubuntu 

20.04 and later) and can be executed as docker containers. The design is highly modular, so 

additional functionality can be implemented as shared link libraries that can be configures 

and loaded on demand. 

 

 

Figure 6-3 Internal diagram of the Transport API (T-API) Optical Network Orchestrator with externalized path 

computation 

6.2.2 Exported North Bound Interface 

As stated, the TAPI Optical Network Orchestrator will adopt the uniform TAPI interface. B5G-

OPEN contributes actively, in cooperation with WP6, to the standardization of this interface 

and data models. It defines a set of core information models and layering to represent optical 

networks and services, as shown in the Figure 6-4. 
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Figure 6-4 Transport API (T-API) Optical Network Orchestrator: logical view of a TAPI topology for an optical 

domain, based on the TAPI Core Information model 

6.3 OPTICAL CONTROLLER  
The optical controller is based on ONOS SDN controller that provides a wide environment 

(including the support of all the most relevant control protocols toward the data plane) that 

besides the control of optical devices and OLS will also be utilized for the control of packet 

devices. In particular, the main roles of the optical controller are: (i) retrieve devices 

description from data plane device and abstract it toward the upper layers of the control 

pane; (ii) receive the service configuration requests by the upper layers of the control pane 

(e.g., the activation of a point-to-point connectivity service) and translate this request is a set 

of configuration messages to be forwarded to each involved device.  

The main interfaces that will used in ONOS to interact with the other B5G-OPEN control plane 

elements are: (i) the ONOS native REST-based northbound APIs will be used to interact with 

the TAPI Optical Network Orchestrator and with the Path computation server, such interfaces 

can be used for both receiving configuration instruction to be applied on the data plane and 

exporting topological and physical impairments information; (ii) NETCONF/YANG based 

interface will be used toward data plane optical devices allowing the configuration and 

management of such devices whose description could be based on standard (e.g., 

OpenConfig, OpenROADM) or proprietary YANG models; (iii) a RESTCONF based interface 

toward the OLS controller. Moreover, ONOS also provides additional interfaces to visualize 

and configure the underlying network such as a web-based GUI and a CLI.  
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Fig 6.5: Web-based GUI of ONOS where both a number of packet-based and optical devices 

(fully disaggregated scenario) are controlled. 

The current version of ONOS is already able to connect to a variety of packet-based and 

optical devices. However, interfaces toward the optical devices should be extended through 

the development of specific drivers, moreover existing drivers should be accurately tested 

and probably updated against the most recent version of standard models (e.g., last tested 

version of TAPI drivers toward the OLS controller was based on TAPI 2.1). Other development 

work will be required in ONOS for: (i) introducing the support of multi-band, (ii) exportation 

of physical impairment device manifest; (iii) introduce the possibility to activate intents using 

as end-point the ROADM’s ports; (iv) extends the NBI REST APIs to enable proper integration 

with the TAPI Optical Network Orchestrator and the Path computation engine.  

6.4 OLS CONTROLLER 
The ADVA OLS controller is based on the Ensemble Network Controller software solution and 

is offering a northbound ONF Transport-API (TAPI) towards the Optical Controller.  

 

Figure 6-5 ADVA OLS Controller Northbound Interfaces 

The OLS controller is exposing the topology. The topology model provides the explicit 

multilayer topology that the Layer 2 to Layer 0 represents. This topology includes the OTS, 
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OMS, and OCH. Based on ONF TAPI 2.1 models, the OLS controller supports a TAPI topology 

flat abstraction model that collapses all layers into a single multilayer topology. A single 

topology represents all network layers such as OCH, and Photonic Media, which include 

media channels, OMS, OTS and so on. This topology is modelled as a tapi- topology:topology 

object within the tapi-topology:topology-context/topology list. The current release supports 

only a single topology, therefore the tapi-topology:topology-context/tapi-topology:nw-

topology-service object is not currently implemented.  

SIPs represent the available service entry points. SIPs associate to all OCh and 

PHOTONIC_MEDIA NEPs in the network support service configuration. A SIP logically maps 

to one topology NEP through the tapi-topology:owned-node-edge-point/mapped-

serviceinterface-point attribute. 

The TAPI topology data model consists of nodes and links. A node is a logical grouping of 

ports that provide a flexible view definition. For example, one view might represent the 

topology one-to-one, whereas another view can represent an entire network as a single 

logical node. 

The current implementation delivers a single default context, with a single topology 

composed of:  

• tapi-topology:node 

• tapi-topology:link 

The interface represents each physical node as a multilayer tapi-topology:node object, which 

creates a 1:1 logical-physical topology. The forwarding domain is the domain associated with 

the entire physical network element. The OLS TAPI interface does not report any information 

about the internal structure of the network element. Each node displays: tapi-topology:node-

edge-point. Each NEP represents an externally visible port that belongs to the node. The TAPI 

interface does not report any information about the internal structure of the network 

element. 

Each NEP represents:  

• A client port 

• An OTS port 

• An OMS port 

• An OCH trail termination point 

The figure below shows an example of a dis-aggregate OLS with three ROADM nodes: 

• Node A: a fully flexible ROADM with client traffic that enters from a filter. 

• Node B: a pass-through ROADM. 

• Node C: as NE A, with client traffic that exits from a filter. 
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Figure 6-6 ADVA disaggregated OLS network example 

This figure below shows the model instantiated on the TAPI interface in this scenario: 

 

Figure 6-7 Corresponding model instantiated on the TAPI interface 

 

6.5 OPTICAL PATH COMPUTATION ELEMENT 
SDN controllers establish connections between the network elements, but they may not have 

an overall view of the network or may decide to rely on an external path optimization engine 

to make advanced specialized computations. This approach has been extensively applied in 

the past in other contexts (e.g., GMPLS or IP). See [Pao13] for a historical review. 

In B5G OPEN, TAPI has been chosen as the NBI for the optical network controllers (TAPI 

Optical Network Orchestrator), handling the provisioning and control of optical connections. 

The optical SDN controller may optionally use an external Path Computation Element, for 

assisting it in the path computation of the connections. 
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In TAPI, the Optical Path Computation Element (OPCE) determines an end-to-end path 

between Service Interface Points (SIPs) and is developed as a TAPI-enabled component. The 

orchestrator sends to the OPCE a TAPI path-request. This module requests an abstract 

topology from the context manager, calculates the path and responses with TAPI path-reply 

after finding a path within that internal context. The interactions between the OPCE and the 

TAPI- Optical Network Orchestrator element will be governed by the standardized Path-

Computation-Service interface and APIs, as defined in [Man21], and when needed, standard 

extensions may be proposed along the project. 

A representative workflow of a typical interaction will be: 

• The Network dimensioning engineer registers the OPCE in the TAPI Optical Network 

Orchestrator SDN controller by its IP address and port. The service TAPI is known by 

both entities. 

• The TAPI Optical Network Orchestrator receives a new connection request with some 

requirements (source and destination, bandwidth provision, latency constraints, QoT 

conditions, etc.). This element detects the registered OPCE and forwards the request 

to OPCE. 

• The OPCE receives the request via TAPI, obtains the parameters as SIPs (end-points) 

and topology model description and solves the path computation problem. 

• Once computed the results, the OPCE sends the reply to the Optical Network 

Orchestrator Controller. It internally updates a topology resources usage view, that 

will consider the path as active, until the TAPI SDN controller instructs the OPCE 

about its release. 

• When the Optical SDN Controller receives the reply, it is responsible for the route 

signalling between network elements. Additionally, as mentioned, it is responsible of 

informing the OPCE about the path release, when it happens to occur. 

The path computation function is constrained to provide optical paths and potentially 

spectrum assignments, that end into viable network configurations, e.g., without spectrum 

clashing. Additionally, optical impairment computations may be triggered, to assess the 

Quality of Transmission (QoT) properties of the new connection, and of the already existing 

co-propagating connections, that may be affected by the new signal.  

The QoT estimation is a very relevant aspect in the presence of optical multiband, where the 

increase of the fiber propagating total signal power and extended spectrum will stress the 

OSNR and power margins. For this aspect, the optical OPCE will integrate an internal or 

external optical signal performances engine. For this, the project may consider different 

approaches, as the new developments, or modifications/incorporations of existing open-

source models like the ones in the GnPy initiative [GNPy]. GNPy is an open-source library for 

building route planning and optimization tools in real-world mesh optical networks. It is 

based on the Gaussian Noise Model, and has been present in the last years in different 

research efforts (e. g. see [Ferra20]). 

6.6 MULTI-DOMAIN SCENARIOS 
Of special interest for B5G-OPEN is the “multi-OLS scenario”, (see Figure 6-8) which is to be 

considered for use cases related to the provisioning of services across a muti-segment 

network in a transparent way. In the multi-OLS scenario, several domains are interconnected 
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transparently (e.g. via optical links), connecting, for example a degree of a ROADM to a 

degree of a ROADM or add/drop to add/drop, as shown in the figure). 

Such scenarios shall be addressed with an arrangement of controllers and the key issue to 

research is how to retrieve the abstracted topological information to perform efficient path 

computation.  

 

Figure 6-8 Control plane architecture for the multi-OLS scenario, showing a back to back add/drop-add/drop 

configuration. 
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7 ACCESS CONTROL 

The B5G-OPEN control and orchestration software system will also support the control of 

access network segments in addition to the control and orchestration of packet and optical 

network segments. In this direction, B5G-OPEN will have the capability to control access 

networks including Passive Optical Networks (PONs) and LiFi networks. During the next 

paragraphs, initials assumptions, as well as alternative architectural considerations are 

presented regarding such control. 

7.1 THE FRAMEWORK OF TDM-PON CONFIGURATION AND CONTROL 
The B5G-OPEN TDM-PON infrastructure will be realised using an XGS-PON OLT pluggable 

transceiver (e.g., TiBit pluggable) and a couple of pluggable ONUs (e.g., Tibit ONUs). The OLT 

will be interfaced directly to a whitebox switch while the OLT is interconnected to the ONUs 

by means of splitters, forming up an ODN branch.  

The TiBit pluggables will be purchased from a third-party company (such as Juniper). 

Regarding the control s/w for the pluggables, the project will consider the option of adapting 

the vendor available software or develop an ad-hoc TDM-PON controller based on the OLT 

PON SDK. The integration of these pluggables with the B5G-OPEN software platform is made 

feasible at three different levels (from higher to lower layer): 

• Via the PON Manager 

• Via a PON Controller 

• Direct through the OLT PON SDK or CLI 

These options lead to four alternatives for the implementation of TDM-PON's control-plane, 

presented in the next subsections.  

7.1.1  First Alternative: Via the PON Manager 

In this case, the PON vendor provides both the pluggable devices and open software for the 

control and management of the TDM-PON. For example, Juniper supports this product via a 

MicroClimate management system which may manage all TDM-PONs in a domain. At the 

northbound interface, MicroClimate provides a set of APIs based on NETCONF or RESTCONF, 

while the BBF/ITU YANG model ([BBF-TR385] definition, [BBF-GIT1] implementation) is the 

common method to model the TDM-PON configuration parameters. Similar solutions are 

provided from other companies. In this case, the TDM-PON control-plane architecture and 

the steps to carry out the integration are illustrated in Figure 7-1, and are as follows: a Higher-

Layer PON Controller is developed as part of the B5G-OPEN software platform, which 

includes the following functionalities: 

• A NETCONF/REST client on the Southbound Interface (SBI) through which the 

communication with the PON Manager the vendor has developed (e.g. the 

MicroClimate in the Juniper’s case) 

• A set of PON abstractions, the objective of which is to extract the PON parameters 

and their values and then to expose to the higher layers only the parameters that are 

valuable for the B5G-OPEN software platform. 

• A NETCONF/RESTCONF server at the Northbound Interface (NBI) which exposes a set 

of APIs that allow the B5G-OPEN app to provision and configure the PONs. This API 
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is using a simplified (subset) BBU/ITU YANG model which depend on the abstraction 

and transformation realised in the lower layer. 

 

 

Figure 7-1 B5G-OPEN Control of PON through the PON Manager 

 

7.1.2  Second Alternative: via a PON Controller 

In this second alternative, the PON vendor provides the pluggable software and the PON 

controller software. The TDM-PON control-plane architecture and its integration to the B5G 

OPEN platform are illustrated in Figure 7-2.  

Since the PON Controller will be provided by the PON vendor, a Higher-Layer PON Controller 

will be developed as part of the B5G-OPEN software platform, providing a slightly different 

functionality: 

• The information exchange is again based on the BBF/ITU YANG models. However, 

the SBI that communicates with the PON Controller is a software client that is 

developed based on OLT PON SDK. 

• Similar to the previous case, a set of PON abstractions is developed that extracts the 

PON parameters and their values. Only the valuable for the B5G-OPEN software 

platform set parameters are exposes to the higher layers. 

• A NETCONF/REST server at the Northbound Interface (NBI) which exposes a set of 

APIs that allow the B5G-ONP app to provision and configure the PONs. This API is 

using a simplified (subset) BBU/ITU YANG model which depend on the abstraction 

and transformation realised in the lower layer. 
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Figure 7-2 B5G-OPEN Control of PON through the PON Controller 

  

7.1.3 Third Alternative: Direct interfacing to the pluggable OLT – Integration to the platform 

via the B5G-ONP app 

In this case, the PON vendor provides only the basic software for the operation of the 

pluggable. The TDM-PON control-plane architecture and the proposed approach for the 

integration with the B5G OPEN platform are illustrated in Figure 7-3.  Two software 

components are developed as part of the B5G-OPEN software platform: a) a PON agent that 

allows a direct communication with the pluggables; b) a PON controller through which the 

PON is controlled.  

The PON agent consists of the following parts: 

• A software client is based on an OLT PON SDK or it is set by establishing a CLI (or 

similar) connection with the OLT pluggable at the NBI. 

• A REST server for the communication with the PON Controller. 

In addition, the PON controller will include the following functionalities: 

• A REST client developed on the SBI for the communication with the PON Agent. The 

information exchange is again based on the BBU/ITU YANG models. 

• A set of PON abstractions, similar to the previous cases. 

• A NETCONF/REST server on the NBI for the communication with the B5G-ONP app.  



 D4.1 GA Number 101016663 
 

49 

 

 

Figure 7-3 Direct communication with the pluggables (B5G-ONP app integration) 

  

7.1.4  Fourth Alternative: Direct interfacing to the pluggable OLT – Integration to the 

platform via the B5G Packet Controller 

This final alternative differs from the previous one in the way the control elements are 

integrated to the remaining B5G-OPEN software components. Therefore, while in the 

previous case the integration is realised with the B5G-ONP app, under the current 

framework, the integration is realised at a lower hierarchical level, i.e., by means of the 

packet controller. The TDM-PON control-plane architecture and the proposed approach for 

the integration with the B5G OPEN platform are illustrated in Figure 7-4.  

In this case, a PON agent needs is developed as an integral part of the B5G-OPEN software 

platform, featuring the following functionalities: 

• A software client is developed by means the OLT PON SDK or by establishing a CLI (or 

similar) connection with the OLT pluggable on the SBI. 

• A set of PON abstraction functionalities, similar to the previous alternatives. In this 

case, the PON configuration should be represented as a set of nodes and links. In 

addition, in order to support some basic QoS on access connections, the upstream 

queue configuration should be also included in the modelling.  

• A REST server/client on the NBI for the communication with the Packet Controller. 
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Figure 7-4 Direct communication with the pluggables (Packet Controller integration) 

  

7.1.5 Discussion on the alternative considerations 

The alternatives listed in the previous subsections all have advantages and disadvantages. 

The option that delegates the integration of the B5G-OPEN platform to a higher layer is not 

the preferred one as it is neither ubiquitous nor vendor agnostic. Similar arguments hold for 

the second alterative (i.e., to control the PON by means of a vendor provided controller), 

although the implications require further study. Therefore, the third and fourth alternatives 

are attractive as they exploit schemes where the information exchange bypass both the 

Manager and the Controller. Actually, the fourth alternative has a higher level of universality 

since the PON control will lay below the packet optical control and therefore it can be 

controlled like an ordinary switch. However, this fourth alternative is facing its own 

challenges which emerge from the abstraction models and the representation of PON’s QoS 

parameters that seems not to be trivial. As such, the third alternative presents itself as a good 

compromise between the pros and cons and it emerges as the preferable option at the time 

of the writing of this deliverable. 

 

7.2 LIFI CONTROL  
 

The LiFi access networks will be provided by Access Points (APs), named LiFi-XC, provided by 

pureLiFi. This LiFi AP device, as illustrated in Figure 7-5(a), converts network information 

coming in from the Ethernet port into wireless light signals via the connected LED lamp for 

the downlink. The uplink signal will be sent via the user device in Infrared spectrum and is 

captured by the AP device. The AP structure is shown in Figure 7-5(b). The AP is implemented 

using an embedded Linux device to bridge Ethernet connection with LiFi interface 

implemented with baseband processor and analogue front-end devices. The AP supports 

automatic provisioning using TR-069 protocol as well as simple network management 

protocol (SNMP) v1, v2c and v3.    
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Figure 7-5: LiFi-XC AP 

As the development in B5G-OPEN, these following supports will be implemented in the LiFi 

AP, as shown in Figure 7-6: 

1) In the initial assumption of LiFi control for B5G-OPEN, it will be implemented to 

support for NETCONF interface. A LiFi specific YANG model will be proposed with 

basic configurations to configure LiFi AP. The motivation behind NETCONF and YANG 

is that instead of having individual devices with functionalities, there is a need to 

have a network management system that manages the network at the service level. 

To integrate the LiFi access technology in the overall B5G-OPEN architecture, 

NETCONF and YANG add more functionalities in the network management. 

 

2) A telemetry adaptor will be implemented within LiFi AP for LiFi telemetry data 

collection and transmission. Some telemetry data could be used for monitoring the 

system performance, such as the received signal powers, the transmit and received 

throughput, etc. For LiFi specifically, some other information could also be used for 

control purpose. For example, since in LiFi the coverage of each AP is much smaller 

compared to other radio based wireless access technologies, by simply knowing the 

SSID of the AP which the user connects to, the location information could be 

obtained. In addition, the SSID of APs which are not being connected as well as their 

inactive time could be obtained via telemetry data, then some actions could be taken 

to save the energy consumption smartly such as by dimming these LED transmitters.  

 

Figure 7-6: Initial assumption for LiFi control 
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8  ORCHESTRATION 

8.1 IT AND NETWORK RESOURCES ORCHESTRATION 
The orchestrations process consists of the coordination of both IT and network resources of 

the infrastructure, in an efficient and harmonized form, pursuing a global optimization of the 

infrastructure usage.  

The so-called slice is the key service requiring such a joint IT and network allocations. In B5G-

OPEN, we generalize the concept of slice as a set of IT requirements to be allocated in the IT 

infrastructure, together with a set of network requirements connecting them, to be allocated 

in the network infrastructure. This definition will be sufficient for this section. A discussion 

on the particular form in which the slice concept is elaborated in B5G-OPEN, is addressed in 

Section 12. 

The coordinated optimization of both IT and network resources has been shown as clearly 

beneficial in a number of research works in the community [Gar20], [Ped18], [Muq21]. 

Intuitively, it is easy to find to examples where trivial blocking situations occur if such a 

coordination is not present (e.g., placing IT application in clusters without enough network 

connectivity to accommodate the application traffic). 

In B5G-OPEN, the orchestration process is implemented in a collaborative form among three 

key groups of components: 

1. The IT resources, potentially distributed in one or more clusters, at different 

locations across the operators’ infrastructure, are handled by one or more IT 

orchestrator systems. 

2. The network resource, involving IP/MPLS and optical layers, are controllable via one 

or more SDN controllers. 

The coordination of IT and network resource allocations is handled by the B5G-ONP (Open 

Network Planner). The key functions of the ONP are providing tools for the design, 

optimization, and planning of services.  

Figure 3-1 represents the macroscopic B5G-OPEN architecture and service interfaces 

including a representative infrastructure example, that will help us to illustrate how the 

coordination is performed. The figure focuses on a simplified network composed of two 

locations (left and right), with an IT cluster and a packet-optical white-box in each of them. 

The white-box includes a number of optical coherent pluggables. Optical transparent paths 

are handled by an optical line system (OLS) controlling three ROADMS. The optical network 

is controlled by the optical SDN controller, which is accessed via a TAPI Optical Network 

Orchestrator, that exports a standardized TAPI North Bound Interface (NBI). The 

configuration of the white-boxes in its packet forwarding-related aspects is handled by the 

IP SDN controller.  

During the provisioning process, the B5G-ONP receives the commands from the user (e.g., 

via a graphical user interface, or via the open API exposed). The type of services that can be 

provisioned are discussed in Section 12. To accomplish the provisioning, the B5G-ONP 

leverages on the Kubernetes systems and SDN controllers as shown in the figure.  
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Note that the described architecture, permits implementing different strategies for the 

allocation decision process. For instance, the B5G-ONP can delegate in the SDN controllers 

the network path computations, or alternatively instruct the SDN controllers which paths to 

allocate according to its centralized decision. We believe such flexibility is a key benefit of 

this approach, that makes it eligible for different use cases and network scales. 

8.2 B5G-ONP MODULES 
B5G-ONP consists of three main modules (see Figure 8-1):  

• Provisioning and discovery module. This module is intended to manage the 

provisioning and termination of different operator-level services, as the ones 

discussed in Section 12, that may involve It and/or network resources. Such functions 

are accessed via an open API designed along the project. However, a Graphical User 

Interface will be prototyped to ease the interactions. 

• Dimensioning and analysis module. This module hosts different algorithmic 

resources, that realize the resource allocation decisions, in different use cases, 

covering both offline network dimensioning, and online resource allocations. These 

modules are designed to be accessed via an open API defined along the project, and 

also a prototyped GUI.  

• Optical Path Computation Element. This module will be specifically developed to be 

able to interact with the TAPI Optical Network Orchestrator, in order to act as an 

Optical Path Computation Element node, to which the TAPI Optical Network 

Orchestrator can delegate the optical path computations. 

 

Figure 8-1 Coordination of Kubernetes cluster from B5G-ONP 

8.3 INTERACTIONS OF THE B5G-ONP WITH THE SDN CONTROLLERS 
The B5G-ONP will interact with the SDN controllers in order to instruct them in the 

provisioning workflows. For this, the interactions will be implemented via the regular North 

Bound Interface (NBI) APIs of the controllers, following the best practices. Additionally, slow-

changing monitoring resource occupation information, suitable for provisioning use cases, 

may be obtained from: i) SDN controller NBIs; ii) network telemetry systems. The decisions 
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on which particular performance indicators will be accessed and from where will be 

elaborated along the project evolution. 

8.4 INTERACTIONS OF THE B5G-ONP WITH THE IT ORCHESTRATOR SYSTEMS 
As better discussed in Section 12, B5G-OPEN will explore Kubernetes as the baseline 

orchestration system in its main efforts, due to benefits like microservice-orientation, agility, 

maturity of its APIs, and industry adoption. 

In a typical microservice-based deployment, the microservices run independently from 

others and communicate between them using well-defined RESTful APIs and synchronous 

protocols such as HTTP. This method is light, fast, easy to spin up and allows scaling only 

those microservices that require more resources to achieve a proper load distribution. 

Nowadays, it is of common use within the most popular cloud providers such as Google, 

Microsoft and Amazon. Kubernetes eases the administration tasks because it automates and 

scales the processes, not being aware of the internal tasks. 

Kubernetes coordinates a highly available cluster of computers that are connected to work 

as a single unit without specifying the individual machines. The containerized applications 

decouple the deployment and applications from individual hosts. Figure 8-2 shows how the 

Kubernetes cluster operate. The Kubernetes cluster consists of two resources, a Master Node 

coordinates the cluster and Working Nodes that run applications (worker machines). The 

communication between the Master Node and the Working Nodes is realized by the 

Kubernetes API exposed by the Master Node [K8s].  

 

Figure 8-2 Kubernetes cluster module (source: [K8s]) 

 

The actual deployed services are distributed in the network onto different physical or virtual 

nodes and require high-performance network connections to be able to provide optimal 

communication (e.g., min latency). Kubernetes dynamically orchestrates the services and 

eases this task for the users.  

Kubernetes management is based on two key concepts: a Kubernetes service, and Pods. A 

Pod is a group of one or more related containers, of the same service, that have to be 

deployed in the same worker node. A Kubernetes service is a component that typically 

represents an application, potentially composed of multiple pods, each of them that can be 

optionally deployed in different worker nodes, but with a common management. According 
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to deployment requirements, the Pods of the service can be present on all the Working 

Nodes (DaemonSet) or some of them (Deployment). 

To cover IT orchestration-related use cases, the key interactions that are anticipated 

between the B5G-ONP and Kubernetes deployments are: 

1. B5G-ONP discovery of Kubernetes deployments. An API should be incorporated in 

the B5G-ONP to permit the registering of Kubernetes clusters, e.g., identified by its 

master node access information. Once a Kubernetes system is registered, its internal 

capabilities should be discovered via the Kubernetes API. After that, the Kubernetes 

resources will be available for B5G-ONP to allocate new B5G-OPEN IT services, e.g., 

as part of B5G-OPEN slices. 

2. B5G-ONP provision and release of microservice-based applications in the IT 

resources of Kubernetes systems. The B5G-ONP will be able to jointly optimize the 

usage of IT and network resources in the allocation of new slices. For this, the B5G-

ONP should interact with the Kubernetes APIs for covering the IT part allocation and 

resource releases in an automatic form. 

3. B5G-ONP extraction of occupation and performance KPIs from the Kubernetes. In 

order to cover its network optimization and planning role, the B5G-ONP should have 

access to the different KPIs of the registered Kubernetes systems. For this, the 

project will explore the existing Kubernetes APIs. 

 

Practical aspect of API interactions and potential API extensions 

The communication between B5G-ONP and Kubernetes uses the HTTP REST API that 

Kubernetes exposes. The Kubernetes API [K8sAPI] lets you query and manipulate the state of 

API objects in Kubernetes (e.g., Pods, Namespaces, ConfigMaps, and Events). Kubernetes 

supports multiple API versions, each at a different API path, such as /api/v1 or /api/v2. API 

resources are distinguished by their API group, resource type, namespace (for namespaced 

resources), and name. The API server handles the conversion between API versions 

transparently: all the different versions are representations of the same persisted data (see 

Figure 8-3). The API server may serve the same underlying data through multiple API versions. 
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Figure 8-3 Different API versions access to a unique persisted data 

Any system needs to grow and change as new use cases emerge or existing one change. 

Therefore, Kubernetes has designed the Kubernetes API to continuously change and grow. 

The Kubernetes project aims to not break compatibility with existing clients, and to maintain 

that compatibility for a length of time so that other projects have an opportunity to adapt. 

Additionally, Kubernetes provides two ways to add custom resources to your cluster: Custom 

Resource Definitions (CRDs) and API Aggregation (AA). 

• The CRD object definition creates a new custom resource with name and schema 

served and handled by Kubernetes API, with less flexibility than with AA. The CRD 

name must be a valid DNS subdomain name. No needs to handle multiple versions 

of the API, no additional services and does not require programming.  

• AA, the user writes and deploys a custom API server allowing specialized 

implementations for customer resources. Once the main API server receive queries 

to custom API server, it forwards them. 

These two alternatives may be explored in B5G-OPEN, in case that a Kubernetes needs to be 

extended to accommodate project needs. 
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9 PACKET/OPTICAL INTEGRATION  

9.1 DISCUSSION ON ARCHITECTURAL OPTIONS  
Traditional metro networks are composed by packet switching nodes (i.e., routers) 

interconnected by optical transport links. In this scenario, packet and optical domains are 

clearly separated, using dedicated controllers. However, standalone muxponders and 

transponders are going to be replaced in optical metro and transport networks by the 

utilization of hybrid packet-optical nodes equipped with coherent pluggable transceivers. In 

this scenario, traditional packet control plane is not adequate because it is unable to manage 

and fully support the configuration of optical parameters associated to pluggable modules. 

Moreover, the coordination between the optical and the packet layer within this novel hybrid 

nodes has not been standardized yet and requires a careful design in order to enable correct 

configuration and avoid management conflicts. 

Two alternative SDN-based hierarchical solutions are in phase of discussion in the community 

enabling control of coherent pluggable transceivers in a multi-layer network exploiting hybrid 

packet-optical nodes [Sca21, Sga21, Ger22]. This section expands upon the aforementioned 

works and provides implementation details, experimental comparison and discussion on the 

possible solutions. 

9.1.1 Reference scenario and proposed solutions 

Figure 9-1 shows a traditional metro network using packet switching nodes (i.e., routers) and 

stand-alone transponders interconnected through optical line systems (OLSs). Where OLS are 

typically composed by a number of ROADMs and optical amplifiers. In this scenario, the SDN 

architecture is implemented with a clear domain separation. Three controllers are typically 

considered: a Hierarchical Controller (HrC) coordinating the end-to-end connectivity; an 

Optical Controller (OptC) in charge of transponders and OLS; and a Packet Controller (PckC) 

in charge of packet switching devices. However, since the two domains are practically 

independent of each other, the role of the HrC is almost limited to forwarding the received 

requests to one of the child controllers which, traditionally, has full and exclusive visibility on 

all underlying network elements. For example, OptC is the unique entity accessing the 

transponders while PckC is the unique entity configuring the packet nodes. 
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Figure 9-1 Traditional SDN architecture for transponder-based optical networks. 

The introduction of packet-optical nodes imposes the redesign of the overall SDN control 

architecture. Indeed, transponders are replaced by packet-optical nodes equipped with 

pluggable modules and the traditional control mechanisms provided by the PckC only are not 

sufficient to configure optical parameters. Since, in large metro networks, a single controller 

with visibility of both layers is not feasible due to scalability issues, a proper workflow needs 

to be defined to enable coordinated operations among controllers, where the HrC assumes 

a fundamental coordination role.  

Figure 9-2and Figure 9-3shows the two solutions considered to provide coordinated control 

of packet-optical nodes, i.e., standalone optical transponders are not used in this scenario. 

With both solutions, the NETCONF protocol is considered for the pluggables configuration, 

while packet configuration can be performed via NETCONF or P4 protocols. 

The first approach, here named Exclusive (Excl), is shown in Figure 9-2. The Excl approach 

provides access to the packet-optical nodes from the PckC only. That is, configurations 

related to both packet forwarding and optical pluggables are enforced by the PckC. In this 

case, the optical parameters (e.g., central frequency, TX power, operational mode) are 

decided a priori by the OptC and exchanged with the PckC through the HrC.  

The second approach, here named Concurrent (Conc), is shown in Figure 9-3. The Conc 

approach relies on the joint control of the packet-optical nodes from both PckC and OptC. 

Configurations related to packet forwarding are provided by the PckC, while those related to 

optical pluggable modules are enforced directly by the OptC. In this case, proper solutions 

are needed to guarantee coordinated access as well as the proper control segregation for 

avoiding possible conflicts. 

The Excl approach is also considered within the TIP project [TipMantra] referred as single SBI 

management. However, TIP also considers an intermediate solution, referred as dual SBI 

management, where the OptC has read access to the packet device transceiver information, 

but their configuration in actually enforced by the PackC that receives the required 



 D4.1 GA Number 101016663 
 

59 

 

configuration values from the OptC via HrC. From an implementation point of view the dual 

SBI management solution significantly simplifies the Conc approach because it avoids the 

issue of having two controllers with write rights on the same device, but from a functional 

point of view it is equivalent to the Conc approach only introducing more latency on the 

communication channel between the OptC and the packet-optical node.   

 

Figure 9-2 Exclusive hierarchical control plane solution 

 

Figure 9-3 Concurrent hierarchical control plane solution 

The workflow for the establishment of end-to-end intents involving both the packet and the 

optical layer is depicted in Figure 9-4using the Excl approach. At step 1, HrC receives a 

connectivity request and computes the related end-to-end path over the multi-layer network 

topology. If the activation of a new lightpath is required, HrC sends an optical intent request 

to the OptC (step 2). At step 3, OptC configures the OLS devices traversed by the lightpath 

and, once the optical intent is installed, a notification is sent to HrC, including the utilized 

optical parameters (step 4). At step 5, HrC shares with PckC the values notified by OptC (i.e., 

frequency, TX power and operational mode) and requests the setup of packet intent. PckC 

configures the pluggable modules and, once the link becomes active, it installs the packet 

intent (step 6). Finally, at step 7, PckC informs HrC that the packet connection was 

successfully configured. 
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The workflow for the establishment of an end-to-end intent using the Conc approach is 

depicted Figure 9-5. At step 1, HrC receives a connectivity request and computes the related 

end-to-end path over the multi-layer network topology. If the activation of a new lightpath 

is required, HrC sends an optical intent request to the OptC (step 2). At step 3, OptC 

configures the OLS devices and the pluggables involved in the lightpath and, once the optical 

intent is installed, a notification is sent back to HrC (step 4). In this case, the configured optical 

parameters are not notified to the HrC, because the configuration of the optical domain is 

fully managed by OptC. At step 5, HrC requests PckC to configure a new packet intent. PckC 

installs the packet intent (step 6) and informs HrC that the packet connection was 

successfully configured (step 7). In case a path with enough bandwidth already exists in the 

optical layer, steps 2, 3 and 4 are skipped by HrC, directly moving to step 5 for the installation 

of the packet intent. In case a path with enough bandwidth already exists in the optical layer, 

steps 2, 3 and 4 are skipped by HrC, directly moving to step 5 for the installation of the packet 

intent without requiring the activation of additional optical pluggables. 

 

Figure 9-4 Exclusive end-to-end intent setup workflow 

 

Figure 9-5 Concurrent end-to-end intent setup workflow. 

9.1.2 Packet-optical node 

For comparing the two approaches an experimental testbed has been setup including a 

preliminary implementation of a packet-optical node where the optical pluggable is emulated 

using an external transceiver. This solution has been preliminary adopted because nodes 

supporting the utilization of pluggables are not yet available in the partner labs. Other 

solution will be used during the project when more advanced hardware will be available, 
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specifically two options are under evaluation: (i) using a single device with coherent 

pluggables and P4/P4 Runtime support; (ii) using two separate devices connected through a 

direct packet link: one device with P4/P4Runtime support and a second device with basic 

packet processing features and coherent pluggables support. 

The internal software architecture of the considered packet-optical node is shown in Figure 

9-6. A Mellanox/NVIDIA SN2010 Ethernet switch, running the SONiC NOS has been used. In 

addition to the default SONiC applications, it includes additional containerized 

functionalities, i.e., the NETCONF agent container and the P4/P4Runtime container, 

depending on the considered scenario (i.e., Excl or Cunc). 

 

Figure 9-6 Packet-Optical node architecture: the packet-optical node exposes P4 Runtime and NETCONF 

interfaces toward the control plane. 

The NETCONF agent container is used to configure and monitor optical pluggables. The agent 

uses the OpenConfig model for hardware representation, including ports and pluggables. To 

avoid misconfiguration issues when multiple controllers access the node, ownership 

segregation has been implemented using the Network Configuration Access Control Model 

(NCACM) solution, as detailed in RFC 8341. More specifically, for each configured user (i.e., 

PckC and OptC), a set of rules is configured in the NETCONF agent, permitting or denying 

operations (e.g., write, read-only) over specific prefix-based configuration parts. 

The NETCONF container is able to direct access the C-CMIS driver of the physically-connected 

pluggable modules, managing the optical parameters. As we do not have yet coherent 

pluggable modules in our laboratories, an external coherent transceiver (e.g., Ericsson SPO 

xPonder with coherent 100G line ports) acts as pluggable. That is, its configuration is not 

provided by the SDN controller directly, instead, it is provided by the packet-optical node as 

for locally equipped transceivers. More in detail, when the controller interacts via NETCONF 

with the packet-optical node, the agent leverages a REST interface toward the coherent 

transceiver to configure/read the optical parameters, as it is a pluggable module attached to 

the box. 

The P4/P4Runtime is the interface leveraged by the PckC to configure the packet layer. Such 

interface has been implemented using a containerized Bmv2. This container-based solution 

provides all the P4 features while processing all traffic at software level in the switch CPU. 
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Thus, switching performance is limited but perfectly usable for therefore usable validation 

and demonstration purposes. 

9.1.3 SDN controller applications 

The implementation of SDN controllers is based on ONOS. Specifically, the parent controller 

and the two child controllers has been implemented developing a dedicated ONOS NetApp 

(i.e., the HrC app, the OptC app and the PckC app). 

• The HrC app retrieves and maintains the information on the status of entire network, 

communicating with child SDN controllers through REST APIs. For each connection 

request, it computes the end-to-end path and splits the computed path between the 

child controllers, relying on both packet and optical domains, i.e., where needed a 

new lightpath is installed in the optical domain.  

• The PckC app allows the communication between PckC and HrC. Two versions of the 

application have been developed, implementing the Excl and Conc approaches. More 

in detail, the PckC app may be deployed with (or without) a Pluggable Manager 

module that is not required when con Conc approach is exploited because plugabbles 

are fully configured by the OptC. 

• The OptC app enables the communication between OptC and the HrC, managing and 

retrieving the pluggables optical parameters. The OptC app is developed with or 

without the Pluggable Manager module according to the two considered scenarios, 

i.e., using the Excl approach such module is not required because pluggables are 

configured by PckC. 

In addition, for supporting the Excl approach where the OptC only configures the ROADMs 

(while the configuration of the pluggables is performed by the PckC), the ONOS intent service 

has been extended to support intent requests whose end-points are ROADMs interfaces.   

9.1.4 Experimental evaluation 

The packet-optical testbed topology used for the experimental evaluation of the two 

considered approaches is illustrated in Figure 9-7 and includes two packet-optical nodes 

equipped with pluggable transceivers, three emulated ROADMs (e.g., OpenROADM 

NETCONF agents running in dedicated docker containers), and four P4-based emulated 

switches (e.g., running BMv2 software switch). Each P4 switch is emulated on a dedicated 

bare metal server (Intel Xeon E5-2643 v3 6-core 3.40 GHz clock, 32 GB RAM) and links are 

implemented through real physical interfaces (i.e., Mellanox ConnectX3 Network Interface 

Cards).  

 

Figure 9-7 Testbed topology. 
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Each packet-optical node consists of a Mellanox/NVIDIA SN2010 Ethernet switch, which runs 

the SONiC operating system over ONIE. In addition to the basic SONiC components, the 

P4/P4Runtime and NETCONF docker containers have been added, as shown in Figure 9-6. As 

presented before, the xPonder Ericsson SPO with coherent line ports at 100G acts as 

pluggable coherent module in packet-optical nodes. 

The scenarios presented in the previous sections have been validated starting from an empty 

network where no lightpaths are configured in the optical network, thus the packet domain 

is composed by two islands. The first goal of the proposed experimental test is to validate 

the procedure to establish an end-to-end intent (i.e., spanning across the packet and optical 

domains). Secondly, we have compared the end-to-end connection setup time (i.e., Te2e) 

obtained considering the two approaches repeating the connection setup experiment for 30 

times. Obtained results are illustrated in the following.  

 

Figure 9-8 Distribution of Te2e over 30 experiments using Concurrent workflow, average value Te2e = 2.38 s. 

 

Figure 9-9 Distribution of Te2e over 30 experiments using Exclusive workflow, average value Te2e = 3.59 s. 

The distributions obtained for the end-to-end connection setup time Te2e using the two 

considered workflows are respectively illustrated in Fig. H and Fig. I. The results prove that 

the Concurrent approach guarantees a faster Te2e, average value is faster of about 34% (3.59 

seconds for Exclusive and 2.38 seconds for Concurrent). This happens because using the 

Exclusive approach, the configuration of the optical devices is performed by two different 

controllers (i.e., OptC configures the ROADMs, then PckC configures the pluggables). Thus, 

to allow the Exclusive workflow, additional information is required to be exchanged between 
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the two child controllers (e.g., the lightpath central frequency decided by OptC) and 

therefore the configuration of pluggables is executed only when the configuration of 

ROADMs is fully completed. Conversely, with the Concurrent workflow the configuration 

parameters of ROADMs and pluggables are decided at OptC, and their actual configuration is 

triggered in parallel, thus leading to a faster end-to-end connection setup. 

Within the B5G-OPEN project the Concurrent approach will be adopted for the control plane 

implementation. This choice that is mostly driven by practical implementation consideration 

is also supported by the experimental results described in this section, that indicate 

Concurrent option as the one potentially achieving faster end-to-end configuration. 

9.2 SONIC GENERIC ARCHITECTURE  
SONiC system's architecture is composed of various modules implemented as Docker 

containers that interact among each other through a centralized and scalable infrastructure. 

At the center of this infrastructure resides a redis-database engine, a key-value database that 

provides a language independent interface to all SONiC subsystems. Thanks to the 

publisher/subscriber messaging paradigm offered by the redis-engine infrastructure, 

applications can subscribe only to the data-views that they require.  

The containerized architecture allows reducing coupling between independent modules and 

between the functionalities implemented by the module and the platform-specific lower-

layer details. Moreover, it allows easy extensibility because new features may be added as 

additional containers without any impact on existing ones. 

The docker containers run within the SONiC operating system, based on the Linux kernel, at 

user space level. Linux allows access to the hardware of the machine only in kernel mode, 

i.e., elevating the privileges of the running process in controlled mode. For this reason, the 

interface to the underlying hardware takes place by means of appropriate drivers. SONiC 

exploits the possibility of extending the Linux kernel thanks to the so-called Loadable Kernel 

Modules (LKM), which avoid the need to prepare a kernel version containing the drivers 

needed by the specific hardware, considerably simplifying the support of switches with 

different features. 
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Figure 9-10 SONiC system architecture 

Figure 9-10 shows a high-level view of the functionality enclosed within each docker-

container, and how these containers interact among them. Some key modules, as the SONiC's 

configuration module (sonic-cfggen) and the SONiC's CLI, are not implemented as containers 

but run directly on the linux-host system itself. 

Currently, SONiC breaks its main functional components into the following docker containers: 

Dhcp-relay container: enables the relay of DHCP requests from a subnet with no DHCP server 

to one or more DHCP servers on other subnets. 

Pmon container: in charge of running sensord, a daemon used to periodically log sensor 

readings from hardware components and to alert when an alarm is signaled. Pmon container 

also hosts fancontrol process to collect fan-related state from the corresponding platform 

drivers. 

Snmp container: hosts snmp features. It includes: i) Snmpd: in charge of handling incoming 

SNMP polls from external network elements; and ii) Snmp-agent: feeds snmpd with 

information collected from SONiC databases in the centralized redis-engine. 

Lldp container: hosts LLDP functionality. It inclues: i) Lldp: this is the process establishing 

LLDP connections with external peers; ii) Lldp_syncd: in charge of uploading LLDP's 

discovered state to the centralized database; and iii) Lldpmgr: provides configuration 

capabilities to lldp daemon by subscribing to STATE_DB within the Redis database. 

Bgp container: runs one of the supported routing-stacks: Quagga or FRR. Even though the 

container is named after the routing-protocol being used (BGP), in reality, these routing-

stacks can run various other protocols (such as OSPF, ISIS, RIP, LDP, etc.). 
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BGP container functionalities are broken down as follows: 

• bgpd: regular BGP implementation. Routing state received by means of the protocol 

are pushed down to the forwarding-plane through the zebra/fpmsyncd interface. 

• zebra: acts as a traditional IP routing-manager; that is, it provides kernel routing-

table updates, interface-lookups and route-redistribution services across different 

protocols. Zebra also pushes the computed FIB down to both kernel (through netlink 

interface) and to south-bound components involved in the forwarding process, 

through Forwarding-Plane-Manager interface (FPM). 

• fpmsyncd: small daemon in charge of collecting the FIB state generated by zebra and 

dumping its content into the Application-DB table (APPL_DB) of the redis-engine. 

Teamd container: runs Link Aggregation functionality (LAG). It includes: i) teamd is a linux-

based open-source implementation of LAG protocol; and ii) teamsyncd process allows the 

interaction between teamd and south-bound subsystems. 

Swss container: the Switch State Service (SwSS) container comprises of a collection of tools 

to allow an effective communication among all SONiC modules. Swss also hosts the processes 

in charge of the north-bound interaction with the SONiC application layer with the exception 

of fpmsyncd, teamsyncd and lldp_syncd processes which run within other containers. The 

goal of all these processes is to provide the means to allow connectivity between SONiC 

applications and SONiC's centralized message infrastructure (redis-engine).  

• portsyncd: pushes port-related state, collected from the hardware-profile config files 

and by listening to netlink events, into APPL_DB. Attributes such as port-speeds, 

lanes and MTU are transferred through this channel. 

• intfsyncd: listens to interface-related netlink events and push collected state into 

APPL_DB. Attributes such as new/changed ip-addresses associated to an interface 

are handled by this process. 

• neighsyncd: Listens to neighbor-related netlink events triggered by newly discovered 

neighbors as a result of ARP processing. Attributes such as the mac-address and 

neighbor's address-family are handled by this daemon and transferred to APPL_DB. 

• orchagent: contains the logic to extract all the relevant state injected by *syncd 

daemons, processes this information accordingly, and pushes it into the ASIC_DB 

within the redis-engine. 

• intfmgrd: reacts to state arriving from APPL_DB, CONFIG_DB and STATE_DB to 

configure interfaces in the linux kernel. 

• vlanmgrd: reacts to state arriving from APPL_DB, CONFIG_DB and STATE_DB to 

configure VLAN-interfaces in the linux kernel. 

Database container: hosts the Redis-database engine. Databases held within this engine are 

accessible to SONiC applications through a UNIX socket. These are the main databases hosted 

by the Redis engine: 

• APPL_DB: stores the state generated by all application containers -- routes, next-

hops, neighbors, etc. 

• CONFIG_DB: stores the configuration state created by SONiC applications -- port 

configurations, interfaces, VLANs, etc. 

• STATE_DB: stores "key" operational state for entities configured in the system. This 

state is used to resolve dependencies between different SONiC subsystems. 
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• ASIC_DB: stores the necessary state to drive ASIC's configuration and operation. 

• COUNTERS_DB: stores counters/statistics associated to each port in the system. 

Syncd container: its goal is to provide a mechanism to allow the synchronization of the 

switch's network state with the switch's actual hardware/ASIC. This includes the initialization, 

the configuration and the collection of the switch's ASIC current status. The main logical 

components are: 

• syncd: process in charge of executing the synchronization logic mentioned above. At 

compilation time, syncd links with the ASIC SDK library provided by the hardware-

vendor, and injects state to the ASICs by invoking the interfaces provided for such 

effect. 

• SAI API: the Switch Abstraction Interface (SAI) defines the API to provide a vendor-

independent way of controlling forwarding elements, such as a switching ASIC, an 

NPU or a software switch in a uniform manner. 

• ASIC SDK: hardware vendors are expected to provide a SAI-friendly implementation 

of the SDK required to drive their ASICs. This implementation is typically provided in 

the form of a dynamic-linked-library. 

9.3 PLUGGABLE MANAGEMENT AND CONTROL  
Whitin the BG5-OPEN project, the SONiC network operating system (NOS) running on the 

packet-optical node is extended with a new docker container that enables SDN on SONiC. A 

NETCONF Agent, developed in the BG5-OPEN project, is deployed in a docker container that 

runs within the NOS and, as depicted in Figure 9-11, communicates with the other containers 

in the system for retrieving and writing information related to coherent pluggable modules. 

More in detail, in the SONiC version 202205 the pmon container runs an updated version of 

xcvrd daemon, capable to retrieve and write the coherent optical parameters from/to the 

registers of pluggable modules. The interfaces used by the demon are compliant with the 

CMIS v5.0 and C-CMIS v1.1 standards. The daemon periodically stores the optical 

transmission parameters in the Redis database. 
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Figure 9-11 Pluggable management and control architecture 

SONiC utilizes custom YANG models that do not take into account optical pluggable modules. 

To address this limitation, in B5G-OPEN, the standard OpenConfig YANG model openconfig-

platform-transceiver.yang is used within the NETCONF agent to model the optical pluggable 

modules. More in details, the parameters in the model can be filled in two ways: in the first 

one, the agent reads the optical parameter stored by the xcvrd daemon from the Redis 

database. In the second one, the agent reads or writes the optical parameters of the 

pluggable module leveraging the API used by xcvrd.Indeed, as depicted in Figure 9-11 two 

bidirectional arrows reach the agent, they represent the communication interfaces (e.g., a 

socket or/and REST API), developed in B5G-OPEN to allow the exchange of information 

between the agent and/or Redis/Pmon containers. In B5G-OPEN the optical SDN controller 

communicates with the NETCONF agent to monitor and control the pluggable modules 

placed in the packet optical nodes. 

9.4   P2MP PLUGGABLE MANAGEMENT AND CONTROL  
The management of P2MP pluggable modules proposed by Open XR [OpenXR] considers a 

dual management structure. The first path, as shown in Figure 9-12 left side, provides the 

“traditional” functionality via the register-based information model defined in Multi-source 

agreements such as OIF CMIS. 

However, the latest version of CMIS lack the capabilities of setting up multiple subcarriers or 

dynamically assigning traffic to the different subcarriers. Hence, a second path, as shown in 

Figure 9-12 right, is proposed to be able to communicate directly with the P2MP pluggable. 

When the messages are destined for the Open XR module are received by the router, they 

are handled by the Communication Agent Service running on the router. These messages are 

forwarded to the data path entering the Open XR module via the module host electrical lanes 

where they are recognized as management/control messages and handled appropriately.  
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Figure 9-12 P2MP Control integration in B5G-OPEN 
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10 TELEMETRY PLATFORM  

Telemetry data is collected from observation points in the devices (measurements), as well 

as events from applications/platforms (e.g., Software Defined Networking (SDN) controllers 

and orchestrator) which are then sent and collected by a central system. 

In the measurements, standards protocols devised for telemetry such as gRPC/gNMI 

[GRPC22] are rapidly gaining attraction. Although such protocols can reduce the amount of 

data, there are huge volumes of measurement data to be collected. Additionally, the 

frequency of data collection leads to make those architectures not practical. In the case of 

events, they should be transported and distributed to other systems. 

In addition, many devices already deployed in transport networks still rely on 

NETCONF/RESTCONF for their management and configuration. These protocols provide 

notification mechanisms [RFC 5277], but they were not originally designed to provide a 

constant flow of telemetry. 

A telemetry “collector” or “mediator” agent may overcome this challenge and provide 

mechanisms to obtain a stable stream of telemetry from legacy devices. 

In B5G-OPEN, we have designed a telemetry architecture that supports both measurements 

and events telemetry. For the former, intelligent data aggregation is placed nearby data 

collection to reduce data volumes, whereas for event telemetry, data is transported 

transparently. 

10.1 B5G-OPEN TELEMETRY ARCHITECTURE 
Figure 10-1 presents the network scenario, where the B5G-OPEN Control system is in charge 

of several optical nodes: optical transponders (TP) and reconfigurable optical add-drop 

multiplexers (ROADM). Note that the SDN architecture might include a hierarchy of 

controllers, including optical line systems and parent SDN controllers (see Section 5) . A 

centralized telemetry manager is in charge of receiving, processing, and storing telemetry 

data, including measurements and events. The telemetry database (DB) includes two 

repositories: i) the measurements DB is a time-series DB stores measurements, whereas the 

ii) the event DB is a free-text search engine. In addition, telemetry data can be exported to 

other external systems. 

Some data exchange between the SDN control and the telemetry manager is needed, e.g., 

the telemetry manager needs to access the topology DB describing the optical network 

topology, as well as the label switched path (LSP) DB describing the optical connections 

(theses DBs are not shown in the figure). Every node in the data plane is locally managed by 

a node agent, which translates the control messages received from the related SDN controller 

into operations in the local node and exports telemetry data collected from observation 

points (labelled M) enabled at the optical nodes. In addition, events can be collected from 

applications and controllers (labelled E). 
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Figure 10-1 Overall network architecture 

A detailed architecture of the proposed telemetry system is presented in Figure 10.2 for the 

case of measurements telemetry. The internal architecture of telemetry agents inside node 

agents and the telemetry manager is shown. Internally, both, the telemetry agent and 

manager are based on three main components: i) a manager module configuring and 

supervising the operation of the rest of the modules; ii) a number of modules that include 

algorithms (e.g., data processing, aggregation, etc.) and interfaces (e.g., gRPC); and iii) a Redis 

DB that is used in publish-subscribe mode to communicate the different modules among 

them. This solution provides an agile and reliable environment that simplifies 

communication, as well as the integration of new modules. A gRPC interface is used by the 

telemetry agents to export data to the telemetry manager, and by the telemetry manager to 

tune the behaviour of the algorithms in the agents. 

Let’s describe a typical measurements telemetry workflow valid for a variety of use cases. 

The node agent includes modules (denoted as data sources) that gather measurements from 

the observation points in the optical nodes. Examples include optical spectrum analysers 

(OSA) in the ROADMs and data from digital signal processing, e.g., optical constellations, in 

the TPs. A telemetry adaptor has been developed, so data sources can export collected data 

to the telemetry system; specifically, the adaptor receives raw data from the data source and 

generates a structured JSON object, which is then published in the local Redis DB (labelled 1 

in Figure 10.2). The periodicity of the data collection can be configured within a defined range 

of values. A number of algorithms can be subscribed to the collected measurements. In this 

example, let us assume that only one algorithm is subscribed, which processes the 

measurements locally. Such a processing might include doing: i) no transformation on the 

data (null algorithm); ii) some sort of data aggregation, feature extraction or data 

compression; or iii) some inference (e.g., for degradation detection). The output data 

(transformed or not) are sent to a gRPC interface module through the Redis DB (not shown 

in Figure 10-2) (2), which conveys the data to the telemetry manager. Since gRPC requires a 

previous definition of the data to be carried, our implementation encodes the received data 

in base64, which allows generalization of the telemetry data to be conveyed. Note that, 

although such encoding could largely increase the volume of transported data, intelligent 

data aggregation performed by telemetry agents could reduce such volume to a minimum. 
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In the telemetry manager, the data are received by a gRPC interface module that publishes 

them in the local Redis DB, so subscribed algorithms can receive them. The algorithms in the 

telemetry manager can implement functions related to data aggregation, inference, etc. 

Once processed, the output data is published in the local Redis DB (4) and can be stored in 

the Measurements DB (5) and/or be exported to external systems (6). Interestingly, 

algorithms in the telemetry manager can communicate with those in the telemetry agents 

using the gRPC interface (7-8). Examples of such communication include parameter tuning, 

among others. 

 

Figure 10-2 Measurements telemetry architecture and workflow 

Fig. 10.2. Measurements telemetry architecture and workflow 

The architecture for the case of events telemetry is presented in Figure 10-3Events generated 

in a SDN controller (or other system), are injected in the telemetry agent, and transported 

transparently to the telemetry manager, which stores them in the Events DB and exports to 

external systems. Note that Null Algorithms are used here just to propagate events, which 

results in the same workflow as in the case of measurements, but no processing is performed. 

 

Figure 10-3 Events telemetry architecture and workflow 
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10.2 TELEMETRY DATA SOURCES 

10.2.1 TAPI Optical Network Orchestrator / SDN controller 

In this case, the objective is to use streaming (mechanism that handles the providing of data 

from one system to another in some form of steady and continuous data flow) for the 

reporting (notification) of ongoing change of state of the controlled system from one 

Management-Control entity (TAPI Optical Network Orchestrator) to another (usually 

superior) management-control entity. Since a significant part of the information is derived 

from instrumentation the data flow is often called telemetry. A streaming approach is 

defined that focuses on conveying TAPI entities, i.e., yang sub-trees and allow a client to 

achieve and maintain eventual consistency with the state of the controlled system. 

In this setting, an Event source/server streaming mechanism is made available as an 

alternative to traditional notifications. The streaming capability is distinct from TAPI 

Notification and is designed to better deal with scale and to provide an improved operational 

approach. In this context, any component of the SDN control plane may act as a source of 

streaming telemetry. 

In particular, the TAPI Optical Network Orchestrator SDN controller will act as a data source. 

For this, the internal architecture of the software will be modified to report asynchronous 

events that happen in the network Macroscopically, the component will implement a REDIS 

client following the B5G-OPEN network streaming telemetry architecture and will generate 

asynchronous events related to topology and connection management. The events that will 

be notified cover network events, related to: 

- Topology (new link, new node, updated node edge point…) 

- Connectivity (new service, new connection) 

The encoding of such events follows TAPI streaming and Telemetry yang model. For example, 

the next snippet shows a specific event: 

{ 

   "metadata":{ 

      "measurement":"EventTelemetry", 

      "index":"sdn_index" 

   }, 

   "data":{ 

      "tapi-streaming:log-record":{ 

         "log-record-body":{ 

            "event-time-stamp":{ 

               "primary-time-stamp":"2022-11-02 11:05:25.080535465 UTC" 

            }, 

            "link":{ 

               "cost-characteristic":[ 

                  { 

                     "cost-name":"te-metric", 

                     "cost-value":"1.000000" 

                  } 

               ], 

               "direction":"UNIDIRECTIONAL", 

               "layer-protocol-name":[ 

                  "PHOTONIC_MEDIA" 

               ], 

               "node-edge-point":[ 
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                  { 

                     "node-edge-point-uuid":"89937add-3380-58ab-94ff-9b2fb4efbeeb", 

                     "node-uuid":"589df6c1-90e1-51f5-bda4-b4cd6b2d01e4", 

                     "topology-uuid":"d8013ae5-12d1-54c0-b653-5d3b5080989f" 

                  } 

               ], 

               "uuid":"71505848-d2b3-57dd-8069-295ce111ec61" 

            }, 

            "record-content":"LINK" 

         }, 

         "log-record-header":{ 

            "entity-key":"71505848-d2b3-57dd-8069-295ce111ec61", 

            "log-append-time-stamp":"2022-11-02 11:05:25.080519123 UTC", 

            "record-type":"RECORD_TYPE_CREATE_UPDATE", 

            "tapi-context":"1d2ba340-41c3-53a9-a615-88380211e6fc", 

            "token":"0" 

         } 

      } 

   } 

} 

 

10.2.2 LiFi Access Points 

The LiFi telemetry data will be collected by LiFi access points as illustrated in Figure 11.5-. On 

the physical layer, the LiFi AP contains photodiode receivers which could capture the uplink 

optical signals and convert them into electrical signals. Such signals contain information of 

the link quality and network performance which are the key telemetry data of interest. This 

information such as received signal strength (RSS) and achieved throughput, can be collected 

periodically whenever a user is connected. To accommodate with the telemetry manager, a 

telemetry adaptor will be implemented within the LiFi AP to send telemetry data to the 

telemetry manager. 

 

Fig. 11.5 LiFi Telemetry. 

10.2.3 Data Collection 

“Flex-Telemetry” (see Figure 10-4) is a program that performs periodically requests to collect 

performance measurements from ADVA devices, using NETCONF and a combination of open 

(OpenConfig) and proprietary data models. Meanwhile, a modular plugin system provides a 

NBI interface capable of providing a stable source of stream telemetry to different mediums, 

such as time-series and in-memory DBs, International Data Spaces (IDS)  
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Figure 10-4 ADVA Flex-Telemetry agent 

 

10.2.4 Spectrum monitoring  

The Nokia Optical Network testbed combine more than 400 km optical fibre with 7 Nodes 

(Figure 10-5). Hardware come from 3 different vendors and also integrates offline lab 

measurement. We have a fully characterized component: fibre length, loss and chromatic 

dispersion; ROADM losses. Transponder consists in 12 commercial elastic TRX Line and offline 

TRX. Other channels based on ASE noise are available to load the testbed. The testbed is 

continuously monitored by our agent.  

 

Figure 10-5 Nokia Optical Network testbed 

We plan to integrate the spectrum monitoring at each node ingress and egress port to the 

telemetry system by implementing a telemetry adaptor. The message will be sent to REDIS 

instance via JSON with the following structure:  

{ 
freq : [<array of frequency value in MHz>] 
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power_x : [<array of power value in mB>], 
power_y : [<array of power value in mB>], 
channel: [<array of [<central channel frequency MHz>,< channel width in MHz 

>]>] 
location:<string containing location identifier> 
} 

10.3 PACKET FLOW MONITORING USING HASHING TECHNIQUES 
Monitoring packet streams at line rates equal or above 100 Gb/s is extremely challenging. 

Sampling techniques are not recommended since a large number of packet flows (above 

40%) contain only one packet [Jurkiewicz20]. Also, inspecting all packets and storing all 

packet headers do not scale as well since FlowIDs require 104 bits in IPv4 or 288 bits in IPv6. 

For this reason, monitoring streams of packets have to be done using hash-based techniques 

on all the packets.  

There exist different probabilistic data structures that provide accurate summaries (not 

exact) efficiently in terms of time and memory requirements; these can be used to query 

streams of packets, for example: 

- To test if a packet belongs to a group of flows or not, for instance, a black list (using 

Bloom Filters) 

- To obtain cardinality of flows, i.e., how many different flows are traversing the port 

(using HyperLogLog algorithm) 

- To identify the top-K heaviest flows/heaters, i.e., top 10 heavy-hitters or top-20, etc 

(using Count-Min Sketch) 

These summaries allow to perform specific operations on all flows at the data plane (in a 

programmable data plane like P4) with reduced memory requirements.  Packet-

optical boxes will include a telemetry agent which will coordinate with a packet-based 

telemetry management system for the setup, configuration and retrieving of flow-monitoring 

information, by means of BF, HLL and CMS data structures. These structures, implmented in 

the P4 pipeline of the packet-optical boxes will be available through gRPC to the telemetry 

manager. 

10.3.1 Bloom Filters 

Bloom Filters allow to check whether a FlowID belongs to a list or not [Bloom70]. A Bloom 

Filter is an array of M bits initially set to zero. Adding an element to the BF set requires to 

hash the element using K hash functions and setting the resulting bits to one in the BF. This 

operation of adding (i.e. setting the results of the K hash functions to one) is repeated for 

every element in a list S (I.e. S={x,y,z}). BF may have false positives (never false negatives) if, 

by chance, all k hash functions of w point to bits set to 1 by other elements. 

Next, when a packet w arrives at the port, the way to check whether it belongs to the set S 

stored in the BF is by taking the K hash functions on w and see which bits they point in the 

BF structure. 

- If hk(w)=1 for all k hash functions, then YES 

- If hk(w)=0 for some k hash functions, then NO 

In general, using 15-20 bits per flow lead to compact BF structures with reduced false positive 

rates and feasible implementations on P4.  
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10.3.2 HyperLogLog 

HyperLogLog (HLL) allows to estimate the cardinality of a set, that is, the number of different 

flow IDs traversing a given port [Flajolet07]. In HLL, only one hash function (e.g., murmur32) 

is needed to be performed to every packet traversing the port. The hash function produces 

a result with n bits; of these n bits, the first b bits identify a register (there are m = 2b 

registers), while the remaining bits are processed in the following way: the number of 

consecutive zeroes is inspected from bit b+1 onwards. The result is stored in the register 

pointed by the first b bits, only if the number of consecutive zeroes is larger than the existing 

value already stored in the register.  

In general, using 32-64 registers with 16 bits per register allow to obtain accurate estimates 

of flow cardinality with compact memory use (about 1 Kbit). 

10.3.3 Count-Min Sketch 

The Count-Min Sketch (CMS) is a data-structure that allows to store the frequencies of each 

flowID in a compact manner [Cormode09]. It is very similar to having multiple Counting 

Bloom Filters. The challenge is again to store the frequencies of flows (especially the heavy 

hitters) where most of them are unique (around 60% of the flows only have one or two 

packets).  

To do this, the CMS comprises a matrix with d rows (one per hash function) and w columns. 

When an element arrives, we compute all d hash functions (one per row) and increase by 

one each position in the appropriate column. Of course, there will be collisions in some 

positions of the structure. However, taking the minimum value of the d positions will reduce 

the probability of overestimating the flow. 

After all elements are introduced in the CMS, we can query it to get an approximate of 

frequency for a particular element. This is performed by inspecting all the counters pointed 

by the hash functions of the flowID and taking the minimum value. In general, with some 

tens of Kbit of memory, we can accurately estimate cardinalities in the order of thousands of 

flows. 
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11 AUTONOMOUS NETWORKING AND QUALITY ASSURANCE 

The monitoring and performance telemetry system developed in this consortium will enable 

to close a control loop and envisage autonomous network operations.  

11.1 AUTONOMOUS NETWORKING 
Optical Autonomous networks are based on several building blocks addressed in this project: 

physical impairment modelling and performance monitoring, telemetry systems and a 

control and orchestration. Since the two last decade, the introduction of the digital signal 

processing at the transponder level leads to low cost and massive monitoring of the physical 

layer while the software defined network paradigm takes advantage of the NE 

programmability through standardized interface (via the OpenAgent) to exploit dynamic 

reconfiguration towards automation.  

From these building blocks, we envisage three main architectures to define the control loop: 

- a local control loop: This scenario is leveraging some limited intelligence at the node 

level. The main objective is the live optimization of a reduced set of parameters on a 

lightpath. One can cite the work already achieve by the members of the consortium 

on frequency optimization to mitigate the filtering penalties [Del19a], power 

optimization to mitigate transient loss [Gou21] hitless baudrate switching [Dut22]. 

Additionally, the recent introduction of the P2PT [Pao22] also enables the feedback 

and the decision of a transponder or a node locally and will be considered as a local 

control loop even if the Central Telemetry Manager can be a client -a consumer- of 

the P2PT.  

- A domain control loop: This scenario is the most common and is leveraging 

intelligence in a centralized architecture. A wide-ranging set of applications for 

closed loop reconfigurations can be deployed and are triggered in response to events 

identified in the central Telemetry Manager. Such an architecture, while not giving 

the best performance in term of reaction speed, will certainly provide the best 

overall decision [Del19b]. 

- A multi-domain control loop: This scenario is probably the most challenging as the 

parameters from one domain are not opened to the other domain and there is a 

need to rely on the previously explained knowledge sharing. It is also a centralized 

architecture empowered by AI/ML to have autonomous networking coordinated 

across domains without exchanging internal domain details.   
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Figure 11-1 Intra domain Control loop architecture 

 

11.2 SINGLE-DOMAIN AND MULTI-DOMAIN QUALITY ASSURANCE 
Quality assurance is based on Intent Based Networking (IBN) [IBN] applications to represent 

the optical transport network (Figure 11-2). In this section, we rely on a deep learning-based 

IBN application for the optical time domain, named OCATA [OCATA], which initial concept 

has been developed in B5G-OPEN. OCATA is based on the concatenation of deep neural 

networks (DNN) modelling optical links and nodes, which facilitates representing lightpaths. 

The DNNs can model linear and nonlinear noise, as well as optical filtering. Additional DNN-

based models are proposed to extract useful lightpath metrics, such as lightpath length, 

number of optical links and nonlinear fibre parameters. 

OCATA includes a sandbox domain to pre-train DNN models, based on the measurements 

available through telemetry (labelled 1 and 2 Figure 11-2). Such models are made available 

to IBN applications (3), which use them to generate expected signals that can be compared 

with those obtained from the network (4). In that way, deviations between the observed and 

the expected signals can be detected and used for, e.g., soft-failure detection, identification, 

and localization. 
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Figure 11-2 Intent-based networking in the intra-domain 

Because telemetry and DNN models are domain internal, knowledge sharing is proposed for 

the IBN applications to solve the problem of inter-domain scenarios (Figure 11-3). IBN 

applications exchange their internal models for the segment of the optical lightpath in their 

domain. By working on DNNs’ internal architecture to ensure not disclosing internal domain 

details, such models can be shared among different domains to create end-to-end lightpaths’ 

models. Armed with such end-to-end lightpaths’ models, domain IBN applications can carry 

out diagnosis and collaborate to localize failures. 

 

Figure 11-3 Intent-based networking in multi-domain scenarios 
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12 INITIAL CONSIDERATIONS ON INTERFACES AND PROTOCOLS  

This section provides an overview of the main interfaces and protocols that are considered 

for the interactions between B5G-OPEN control plane components and towards external 

systems (such as Operational Support Systems) and Network devices (including the 

prototypes developed by WP3). 

12.1 OPENCONFIG FOR PACKET AND OPTICAL 
The OpenConfig project [OpenConfig] is a collaborative effort by network operators to 

develop programmatic interfaces and tools for managing networks in a dynamic, vendor-

neutral way. Thus, its models are periodically updated. All OpenConfig models are available 

on github [OpenConfig]. The OpenConfig information model is composed by a set of abstract 

modules. Each one is composed by a set of YANG models and represents a specific capability 

and features of a network device, such as HW components hierarchy, interfaces, OSPF 

configuration, QoS, among others.  

The main modules used for Packet and Optical SDN operations are the following:  

Platform: 

• Platform - openconfig-platform.yang – It constitutes the main model to 

define the hardware components of a network device. 

• CPU - openconfig-platform-cpu.yang – It augments the platform model to 

add specific parameters of a CPU component. 

• FAN - openconfig-platform-fan.yang – It augments the platform model to add 

specific parameters of a FAN component. 

• LINECARD - openconfig-platform-linecard.yang – It augments the platform 

model to add specific parameters of a Linecard component. 

• PORT - openconfig-platform-port.yang – It augments the platform model to 

add specific parameters of a port component. 

• PSU - openconfig-platform-psu.yang – It augments the platform model to 

add specific parameters of a PSU (Power Suply Unit) component. 

• TRANSCEIVER - openconfig-platform-transceiver.yang – It augments the 

platform model to add specific parameters of a Transceiver component. 

• Platform Types - openconfig-platform-types.yang – It defines the types used 

to define the parameters in the platform module parameters 

Optical-Transport: 

• Terminal Device - openconfig-terminal-device.yang – It defines the main model to 

define a terminal optics device. 

• Optical Transport Types - openconfig-transport-types.yang – It defines the types 

used to define the parameters in the optical transport module parameters. 

Terminal device manifest 

Openconfig has defined the manifest files, a special type of model which is not configuration 

nor operation. A remote controller requires some data from the transceiver in order to 

perform optical planning and impairment validation of the end-to-end transmission across 

an Optical Line System (OLS). When a pluggable module is recognized by a terminal device 
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(which can be a transponder or a packet-optical box), the operational mode datastore is 

updated.  

• operational-mode-capabilities this set of attributes contains all characteristic 

information of the signal (modulation format, FEC, bit rate...), relevant information 

for the physical impairment validation (OSNR Rx sensitivity, CD/PMD tolerance and 

penalties). 

• optical-channel-config-value-constrains: Contains the transmission configuration 

constrains/ranges of the optical-channel's attributes characterized by the 

operational-mode, i.e., the central frequency range, the frequency grid and the 

configurable transmitted power. 

 

Figure 12-1 Hierarchy of components of an open terminal device 

The main modules that are required for packet (IP/MPLS) control are: 

bgp: This set of modules describe the BGP protocol configuration. They are used in the service 

related use cases to handle the BGP protocol and to support IP Connetivity.   

interfaces: Model for managing network interfaces and subinterfaces. For the use cases that 

are currently defined is used to configure the line side interfaces after setting up the optical 

connectivity. 

local-routing: This module describes configuration and operational state data for routes that 

are locally generated, i.e., not created by dynamic routing protocols.  It can be used with 

network-instances to configure the static routes. 

network-instance: The network instance is an abstraction of a packet fowardign device. It  

may be a Layer 3 forwarding construct such as a virtual routing and forwarding (VRF) instance 

or the Global routing instance. A Layer 2 instance such as a virtual switch instance (VSI) and 

Mixed Layer 2 and Layer 3 instances are also supported. The network instance works in 

conjunction with other modules such as: 

o Interfaces  
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o VLANs 

o Potocols 

 

12.2 P4 AND P4 RUNTIME 
 

 

Figure 12-2 P4 development workflow [https://p4.org/] 

Programming Protocol-independent Packet Processors (P4) is a domain-specific language for 

network devices that defines how data plane devices (switches, NICs, routers, filters, etc.) 

process packets. P4 [P4] is an open-source project whose goal is to develop and define the 

tools needed to work with P4 (e.g., specifications, compiler, interfaces, etc.) in order to 

enable next-generation SDN. The tools/applications developed in the project are maintained 

in [P4lang] GitHub repository. Figure 12-2 shows the P4 development workflow required to 

program and install a P4 pipeline and control it via an SDN controller. More in detail, a P4 

program allows to implement a custom pipeline supporting: configurable match-action 

tables and packet headers, metadata extraction, programmable actions, and stateful data 

structures. The P4 compiler generates an executable file for the target data plane and the 

runtime mapping metadata to allow the communication among control and data planes. The 

P4Runtime API is an RPC interface used by the control plane for managing a P4 device where 

a custom pipeline is installed. After a detailed analysis, P4 language and P4Runtime perfectly 

fit the requirements for managing and control the packet optical node in the BG5-OPEN 

project. Indeed, the possibility to perform in-network operations opens the way to new 

applications and functionalities to be operated at wire-speed. The B5G-OPEN deliverable 

D3.1 reports an example of optical monitoring parameters included within telemetry packets 

that are processed by the P4 ASIC for fast recovery. 
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12.3 TRANSPORT API (TAPI)  
The TAPI Optical Network Orchestrator, as an SDN controller, provides Network Topology 

and Connectivity Request services to a parent SDN Controller or another T-API-able user. It 

is mainly responsible for the offering of DSR connectivity services between optical 

transponders that are connected to the ROADMs. The transport protocol used for all 

operations on the NBI is RESTCONF [RFC8040]. It is an HTTP-based protocol that provides a 

programmatic interface for accessing data defined in YANG, which is the language T-API is 

defined in. The key YANG models composing the T-API information models are to be based 

either in the current version 2.1.3  [TR-547] or in the upcoming TAPI 2.4 [TAPI2.4], including 

the following modules 

- tapi-common.yang ,  

- tapi-connectivity.yang ,  

- tapi-dsr.yang  

- tapi-topology.yang  

- tapi-connectivity.yang 

- tapi-path-computation.yang 

12.3.1 Generic Aspects 

T-API is based on a context relationship between a server and a client. A Context is an 

abstraction that allows for logical isolation and grouping of network resource abstractions 

for specific purposes/applications and/or information exchange with its users/clients over an 

interface. It is understood that the APIs are executed within a shared Context between the 

API provider and its client application.  

A shared Context models everything that exists in an API provider to support a given API 

client. The T-API server tapi-common:context includes the following information: The set of 

Service Interface Points (SIP) exposed to the TAPI client applications representing the 

available customer-facing access points for requesting network services.  

This set must allow Connectivity Service (CS) creation at the DSR Layer, a topology-context 

which includes one or more top-level Topology objects which are dynamic representations 

of the network, and connectivity-context which includes the list of Connectivity-Service and 

Connection objects created within the TAPI Context.  

Adopting TAPI allows a standard and mature way to interact with SDN controllers for optical 

networks, as specified in OOPT MUST [MUST]. In particular, the figure below (Figure 12-3) 

shows a common representation of an optical network using TAPI terminology and 

convention. 



 D4.1 GA Number 101016663 
 

85 

 

 

Figure 12-3 TAPI representation of a digital service between pluggables across an optical network 

      

12.4 PATH COMPUTATION  
B5G OPEN will adopt the TAPI (Transport API) architecture [TR-547], and as such, the OPCE 

element is a module that can assist the TAPI Optical Network Orchestrator for computing the 

optical path e.g., in the provisioning process. More than one OPCE implementations can be 

used, by different partners, e.g., implementations included inside the B5G-ONP, or external 

to it, with different capabilities. 

The interaction between the OPCE and the TAPI Optical Network Orchestrator will be 

engineered according to the TAPI standards (TAPI version 2) in section 12.3. Figure 12-4 

shows an exemplified sequence of messages in a typical interaction. 

  

Figure 12-4 Exemplified TAPI Optical Network Orchestrator -.OPCE interaction. 

  

The project may require extensions of these interactions for accommodating two key novel 

aspects: 

OTS_MEDIA

OTS_MEDIA

OMS

OMS

MC

MC

OTSiMC

OTSiMC
(+OTSi PAC) MC Top Connection (a/d to a/d port)

OTSiMC Top Connection (line to line port)

OMS 
Top Connection with Pools 

OTS_MEDIA 
Top Connection 

(deg to amp port)

OTS_MEDIA 
Top Connection 

(amp to deg port)

OTS_MEDIA 
Top Connection 
(a/d to line port)

OTS_MEDIA 
Top Connection 
(line to a/d port)



 D4.1 GA Number 101016663 
 

86 

 

• Multiband operation 

• Optical impairment computations in this context. 

The details of such variations are being discussed along the WP3/WP4 activities in the 

project, and will be reported in the appropriate deliverables. Additionally, they will be 

contributed to the optical scientific community and standards as one of the project 

outcomes. 

12.5 ONOS NATIVE  
The ONOS controller includes a wide set of northbound REST APIs providing 

GET/POST/DELETE methods towards the network [ONOSREST]. For example, GET methods 

can be used to retrieve information about the network topology or about the current 

configuration of ONOS applications (NetApps) running on the controller. Similarly, POST and 

DELETE methods can be used to interact with the network devices and the network 

applications, e.g., sending new configuration to the network devices or modifying actual 

values of NetApps parameters. 

These interfaces will be used to integrate the optical controller within the B5G-OPEN control 

plane, specifically the interfaces will be consumed by the Orchestrator and the TAPI tools.  

Current implementation of such interfaces is not complete for the B5G-OPEN purposes, 

especially interfaces should be extended for enabling retrieval of optical resource utilization 

(e.g., supported and available frequency slots) and optical physical parameters to be used by 

upper control plane components. Such APIs will be therefore extended during the project to 

provide all data required by the upper B5G-OPEN components.  

12.6 OPENROADM 
[OpenROADM] is a Multi-Source Agreement initiative, active since 2015 and comprising 

several network operators and optical system and component vendors. From the control 

plane perspective, OpenROADM defines data models for device, network, and service 

modelling, targeting the fully disaggregated network model. The device model covers 

detailed configuration information, alarm, and performance monitoring and, as such, was 

chosen by the METRO-HAUL project as the reference interface for ROADM devices. Recently, 

device models have been extended opening to the “partial disaggregated” solution covering 

also trans-, mux- and switch-ponders. 

The METRO-HAUL project developed an OpenROADM driver for the ONOS SDN controller to 

control ROADM devices. The driver is currently downloadable from the official ONOS 

repository and available under the ODTN-driver section [ONOS]. During device discovery, 

ONOS retrieves the number and type of ports together with their capabilities to feed its 

internal device database. More specifically, the current driver collects the spectral feature of 

the ports reading the <mc-capabilities> branch from the device datastore, available both for 

degrees and Shared Risk Group (SRG, i.e., add/drop modules). However, with such spectral 

information is possible to model only single band devices. Recent updates of the device 

model (starting from v.7.0.0) address multi-band devices by a new top-level branch named 

<mc-capabilities-profile>, very similar to the old <mc-capability> but that can be instantiated 

several times to describe the different bands and can be referenced by ports, degree and 

SRG, as can be seen in the following tree, extracted from the OpenROADM device model. 
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+--rw circuit-packs* [circuit-pack-name] 

|  +--rw circuit-pack-type 

|  +-- 

.... 

|  +--rw ports* [port-name] 
|     +--rw port-name 
|     +-- 
|     +--ro mc-capability-profile-name* 
.... 
+--rw degree* [degree-number] 
|  +--rw degree-number 
|  +-- 
|  +--ro mc-capability-profile-name* 
.... 
+--rw shared-risk-group* [srg-number] 
|  +--rw srg-number 
|  +-- 
|  +--ro mc-capability-profile-name* 

.... 

+--ro mc-capability-profile* [profile-name] 

   |  +--ro profile-name 

   |  +--ro center-freq-granularity? 

   |  +--ro min-edge-freq? 

   |  +--ro max-edge-freq? 

   |  +--ro slot-width-granularity? 

   |  +--ro min-slots? 

   |  +--ro max-slots? 

 
Figure 12-5 Extract of OpenROADM tree for multiband support 

On the other hand, the device model covers only the case of point-to-point connections. 

Coverage for point-to-multipoint optical connections, as those needed by XR-optics, is not 

yet in the scope of the MSA. Currently, the <roadm-connection> container allows creation of 

both express and add-drop connections uniquely between one source and one destination 

Network Media Channel (NMC) interface. Even if nothing prevents, from a generic 

perspective, to have more than one roadm-connection referencing the same NMC, this is not 

a shared solution and may create interoperability issues. 

12.7 INTERFACES FOR THE TELEMETRY PLATFORM  
We rely on Redis as a demarcation point between data sources and the telemetry system. 

Telemetry data generated by data sources are encapsulated as JSON objects and published 

in a Redis database. In particular, the RedisJSON module that provides JSON support for Redis 

is used. RedisJSON lets store, update, and retrieve JSON values in a Redis database, similar 

to any other Redis data type. The publish/subscribe paradigm is used to decouple data 

sources (publishers) from subscribers aimed at reaching good scalability and achieving 

dynamic messaging routing. 

A gRPC interface is used to transport telemetry data, both measurements and events, 

between telemetry agents and the telemetry manager. GRPC uses Protocol Buffers as the 

interface description language to serialize structured data. Protocol buffers have a strict 

specification, which needs to be defined for every type of data being transported. Then, to 

avoid the proliferation of protocol buffers schema, a single one is defined that encoded in 

base64 JSON objects encapsulating whatever telemetry data to be transported. Note that 

B5G-OPEN relies on intelligent data aggregation techniques to reduce the amount of 

telemetry data that is actually conveyed to the centralized telemetry manager. Therefore, 

even though gRPC potentials are not fully exploited in this approach, preliminary results show 

no significant increment of data being transported. 
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12.8 CONTROL OF PLUGGABLE MODULES  

12.8.1 Coherent pluggable modules 

Common Management Interface Specification (CMIS)[CMIS], defines a generic management 

communication interface and protocol among the host (e.g., network switch) and modules 

(e.g., optical transceivers). This interface has been defined in order to provide a standard 

across a variety of module capabilities and form factors (QSFP-DD, OSFP, COBO) to foster the 

vendor agnostic management. The Coherent CMIS (C-CMIS) extends the CMIS interface to 

handle coherent optics pluggables, e.g., 400ZR modules, that require additional calls to 

perform interface-related data processing, such as Forward Error Correction (FEC). The CMIS 

and C-CMIS specifications are defined within the Optical Internetworking Forum (OIF)[OIF] 

thanks to the joint collaboration of network devices vendors. These standards fulfil the needs 

of B5G-OPEN project for managing ZR and OpenXr pluggable modules within a packet-optical 

node.  

12.8.2 PON pluggable modules  

The integration of the PON access networks (e.g., PON pluggables) with the B5G-OPEN 

software platform can be realized in three different levels (from higher to lower layers):  

a) B5G-OPEN integration with PON Manager;  

b) B5G-OPEN integration with PON Controller;  

c) Direct communication using OLT PON SDK or CLI.  

The aforementioned options generate a set of four architectural alternatives for the PON 

control and therefore for the actual integration with the B5G-OPEN platform, which are 

described in detail in Section 8.1.  

The third alternative (direct communication with the pluggables through the B5G-ONP app) 

seems more straightforward and seems to be the dominant option at the time of the writing 

of this deliverable. 

12.9 LIFI INTEGRATION 
The LiFi AP architecture has been described and shown in Figure 7-5. The interface for the 

LiFi integration would be via Ethernet ports. The support for NETCONF will be provided as 

well as a YANG model for LiFi. A basic model example for LiFi has been implemented as shown 

in Figure 12-6. It will also be further considered using Openconfig.  

 

Figure 12-6: Basic model for LiFi 
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It will be enhanced for more control operations such as: 

• Enable lifictl operations from Netconf i.e., add options in the model to set lamp 

power, set brightness, display help message, etc. 

• Enable system reboot from Yang model 

• Add DHCP IP configuration option 

 

12.10 B5G-OPEN SLICING NORTH BOUND INTERFACE 
The B5G-OPEN project will provide ad-hoc developed APIs using REST/APIs paradigm, 

following best practices (e.g., Open-API documentation), as the northest API of the 

ecosystem. The target user of these APIs in an industrial deployment would be e.g., the 

operators OSS systems, or directly operator personnel in charge on provisioning of the 

different services. 

These APIs are designed to provide an open and programmatic access to the different use 

cases to be demonstrated. The details of these APIs will be defined later in the project, 

appropriately reported. 

General policies have been already defined for those APIs: 

• REST-based APIs, exposed via open documentation frameworks, preferably OpenAPI. 

o Making use of the IETF YANG model for Network Slices [NSv16]. 

• Adoption of the Optimization-as-a-Service (OaaS) paradigm [Gar19][Pav15]: 

o  This relies in the concept of algorithm repository, as a set of algorithms 

exposed, browsable in a catalogue, and runnable via the open APIs. A subset 

of the algorithms developed along B5G-OPEN will be integrated using this 

form. 

o Utilization of container models for shipping the algorithm implementations. 

This means that the different algorithms will be packaged into separated 

containers, that can be ran independently in the B5G-ONP system. This is an 

enabler for integrating algorithms developed in different languages and 

platforms (a practical aspect, that becomes actually a booster for the OaaS 

concept), and possibly by third parties, into the B5G-ONP system. 

 

12.11 KUBERNETES  
The integration of the Kubernetes cluster with the B5G-OPEN software platform will be 

realised through the APIs [K8sAPI] exposed by the Kubernetes API Server (kube-apiserver) 

deployed in the Kubernetes master. An API client to be deployed in the B5G-ONP app will be 

used in order to instantiate/delete new services, to retrieve basic resource related statistics 

and to influence the placement decisions. 

A preliminary implementation of the B5G-ONP interaction with a set of (two) K8S clusters is 

already in place in ELIG facilities. This is being used to prototype the APIs that interact with 

the K8s for the following use cases, at this moment: 
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• Registration of new K8s clusters in the B5G-OPEN system. By doing that, the clusters 

are eligible for dimensioning/provisioning use cases. 

• Retrieval of macroscopic occupation information on registered clusters. 

It is expected that along year two, the bulk of the control related use cases are also 

prototyped and demonstrated. 

12.12 OPEN XR CONTROL INTERFACE 
The integration of OpenXR IPM with B5G-OPEN system will be realized on an Open XR 

NBI.  This interface enables: 

• Retrieval of module inventory information: part numbers, serial numbers, line and 
client interfaces; 

• Monitoring of fault conditions of the module resources: fault management, following 
RFC-8632; 

• Module software management: inventory and upgrade of SW versions; 

• Hub-Spoke topology management: discovery and configuration of optical P2MP 
network topologies; 

• Line side transport capacity management: discovery and configuration of digital sub 
carriers into transport capacities; 

• Client service management: discovery and configuration of client mapping to 
transport capacities; 

• VTI (L2) service management: configuration of VLAN based end to end services. 
Symmetric or asymmetric traffic with dedicated or shared downlink transport 
capacity. 

 

A first integration will make use of an OpenXR REST API. Openconfig shall later be extended 

to allow control of the novelties introduced by XR Optics allowing the integration to be done 

via Openconfig. 
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13 CONCLUSIONS AND NEXT STEPS 

This deliverable has presented the set of requirements, use cases and initial architecture 

proposal for the B5G-OPEN control plane. The set of requirements include the discovery of 

the existing resources and topology, planning of the network resources and advanced use 

cases to support fault management, along with use cases for autonomous network 

operations are also described. Control-plane services, including point-to-point optical 

connectivity, point-to-multipoint XR connectivity, IP link provisioning, B5G-OPEN Slice and 

telemetry services, are also described in the document. 

The state of art in existing frameworks has been surveyed and presented in Section  4, 

covering SDN controllers, Node Operating Systems, Telemetry tools and Network planning 

frameworks. The decisions to build every prototype component of the B5G-OPEN 

architecture is based on the outcome of the survey. The maturity and availability of open-

source code is the main driver to select the framework to build upon.  

Regarding the B5G-OPEN control plane architecture, this is described in Figure 5-1 showing 

a number of components that will trigger innovations in the following aspects of the control 

plane: 

- Systems and devices to enable multi-band optical transmission, and their 

appropriate control, including the control of emerging pluggable interfaces together 

with existing transmission systems. 

- Control tools for setting up multi-domain connections traversing different network 

segments, including the modelling of physical layer impairments in MB capable 

networks. 

- Planning tools able to understand the packet-optical multi-band network as a whole, 

including access together with optical and packet layers. 

- Telemetry modules for the collection of network state and continuous monitoring of 

both optical and packet parameters.  

- Intent Based Networking, network automation and the design of AI/ML  algorithms 

that enable network self-management and operations based on telemetry 

information and past historical data.  

Sections 6 through 11 have gone in detail in the internal architecture of the components of 

each architectural Block. In the detailed architecture, the frameworks that have already been 

selected have been added in the required architectural component, for example SONIC as 

Node Operating System for packet/optical boxes or ONOS as Optical SDN Controller. It is 

relevant to highlight that B5G-OPEN architecture is generic and defines Open interfaces 

among the components.  

In terms of Control Plane architecture definition, the work for the second year will be focused 

on extending the work to multi-controller / segments in a domain-less manner. B5G-OPEN 

envisions that the delivered services are not constrained to source/destination being in the 

same segment.  
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During the first year of the project, a set of interfaces, summarized in Section 12, has been 

identified to fulfil the control plane requirements for packet, optical  and access technologies, 

as well as communication within B5G-OPEN components and towards external 

users/applications. The plan for the second year of the project is to specify in detail those 

interfaces. When required, the available standards/ APIs will be extended and the new 

specification will be taken back to the relevant body, with the collaboration of WP6. For 

example, WP4 members are active contributors to Transport API, Openconfig, OpenRoadm 

or OpenXR, among others. The selected interfaces will be implemented in the foreseen B5G-

OPEN Prototypes developed in WP4. 

The second year of the project will be focused, in addition, to completing the interface 

specification, on prototyping the identified WP4 components. These prototypes of software 

components in development by WP4 will be ready to be used in WP5 demonstrations and 

will control selected WP3 hardware. It is expected that WP3 will provide the final 

specification of devices and interfaces and final version of the physical layer impairment 

validation model to be used in the path computation function.  

In terms of detailed prototyping activities, the following work is expected for Y2: 

• Implementation of different B5G-ONP modules, starting with a first prototype of the 

interface with i) the TAPI Orchestrator and ii) the K8S clusters, according to the 

guidelines stated in this deliverable.  

• Implementation of an interface between a SONIC whitebox and the B5G-ONP in 

different control use cases. 

• Implementation and enhancement for the LiFi YANG model. Meanwhile, the 

telemetry adaptor is under development for LiFi access which delivers LiFi telemetry 

data that has been defined. 

• Design and implementation of the TAPI enabled Network Orchestrator, which will 

interact with the B5G-ONP path computation module and with the optical controller.  

• Implementation of network streaming module, by which the TAPI orchestrator shall 

be able to report the status of the network following the B5G-OPEN telemetry 

architecture as presented in this document. 

• Extending and testing of the SONiC NOS to enable the control of coherent pluggables 

and implement the interfaces toward other B5G control plane blocks. In particular, a 

demonstration for OFC 2023 (accepted) is in preparation implementing the SONiC 

box interface toward the B5G-ONP. Moreover, the SONiC box interface toward the 

ONOS optical controller is in phase of development and will be tested during Y2.  

• Deployment and testing the ONOS optical controller. After the first development, 

during Y2 several developments are needed in ONOS: support of multi-band; support 

of multi-domain intents; interfaces toward T-API proxy on north-bound; drivers on 

south-bound toward packet-optical nodes, OpenROADM devices, OpenConfig 

devices, T-API OLSs, other devices; retrievment of physical impairments from devices 

and OLSs.  

• Integration of  data sources from devices and controllers provided by several 

partners into the telemetry system and preparing a demonstration for OFC 2023. 

Intelligent data aggregation algorithms will be developed to process telemetry data 

distributely.  

• Regarding IBN, development of strategies for sharing models between network 

domains, so as to allow end-to-end modelling. 
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• Integration and demonstrate the Flex-Telemetry agent in the B5G-OPEN telemetry 

framework.  

• Extension and integration of the OLS control for the control and monitoring of multi-

band amplifiers. A current topic is to evaluate the upgrade of the B6G-OPEN Optical 

Controller and OLS Controller to the recently released TAPI 2.4.0. 

• Implementation of packet flow monitoring based on hashing techniques using P4. 

The monitoring algorithms will be evaluated both in simulation environments, along 

with a proof-of-concept testbed based on P4 whitebox.  

• Integration of the P2MP transceivers with the OpenXR REST API. Openconfig shall 

later be extended to allow control of the novelties introduced by XR Optics allowing 

the integration to be done via Openconfig. 
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